
Duality in Logic, Games and Categories

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF)
CNRS & Université Paris Diderot

Duality Theory

Swiss Graduate Society for Logic and Philosophy of Science
University of Bern, 28 May 2018



Logic Physics

What are the symmetries of logic?
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What are the symmetries of logic ?



A logical space-time

t  t   t   t   t   t  

Emerges in the semantics of low level languages



The basic symmetry of logic

The logical discourse is symmetric between Player and Opponent

Claim: this symmetry is the foundation of logic

So, what can we learn from this basic symmetry?



De Morgan duality

The duality relates the conjunction and the disjunction of classical logic:

p A _ B q ˚ � B ˚ ^ A ˚

pA ^ B q ˚ � B ˚ _ A ˚



De Morgan duality in a constructive scenario

Can we make sense of this involutive negation

A ˚˚ � A

in a constructive logic like intuitionistic logic?

In particular, can we decompose the intuitionistic implication as

A ñ B � A˚ _ B



Guideline: game semantics

Every proof of formula A initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages



The formal proof of the drinker’s formula

AxiomApx0q $ Apx0q Right Weakening
Apx0q $ Apx0q,@x.Apxq

Right ñ
$ Apx0q,Apx0q ñ @x.Apxq

Right D
$ Apx0q, Dy.tApyq ñ @x.Apxqu

Right @
$ @x.Apxq, Dy.tApyq ñ @x.Apxqu

Left Weakening
Apy0q $ @x.Apxq, Dy.tApyq ñ @x.Apxqu

Right ñ
$ Apy0q ñ @x.Apxq, Dy.tApyq ñ @x.Apxqu

Right D
$ Dy.tApyq ñ @x.Apxqu, Dy.tApyq ñ @x.Apxqu

Contraction
$ Dy.tApyq ñ @x.Apxqu
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Negation permutes the rôles of Proponent and Opponent



Duality

Opponent
Environment

plays the game

 A

Proponent
Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent



Classical duality in a boolean algebra

Negation defines a bijection

B

negation

��

K Bop

negation

]]

between the boolean algebra B and its opposite boolean algebra Bop.



Intuitionistic negation in a Heyting algebra

Every object K defines a Galois connection

H

negation

��

K Hop

negation

]]

between the Heyting algebra H and its opposite algebra Hop.

a ďH K� b ðñ b ďH a( K ðñ a( K ďHop b



Double negation translation

Every object K defines a Galois connection

H

negation

��

K Hop

negation

]]

between the Heyting algebra H and its opposite algebra Hop.

The negated elements of a Heyting algebra form a Boolean algebra.



The functorial approach to proof invariants

Cartesian closed categories



Cartesian closed categories

A cartesian category C is closed when there exists a functor

ñ : C op ˆ C ÝÑ C

and a natural bijection

ϕA,B,C : C pA ˆ B , C q � C pB , A ñ C q



The free cartesian closed category

The objects of the category free-ccc(C ) are the formulas

A,B ::“ X | Aˆ B | A ñ B | 1

where X is an object of the category C .

The morphisms are the simply-typed λ-terms, modulo βη-conversion.

In particular, the βη-normal forms provide a “basis” of the free ccc.



The simply-typed λ-calculus

Variable
x : A $ x : A

Abstraction
Γ, x : A $ P : B
Γ $ λx.P : A ñ B

Application
Γ $ P : A ñ B ∆ $ Q : A

Γ,∆ $ PQ : B

Weakening
Γ $ P : B

Γ, x : A $ P : B

Contraction
Γ, x : A, y : A $ P : B

Γ, z : A $ Prx, y Ð zs : B

Exchange
Γ, x : A, y : B,∆ $ P : C
Γ, y : B, x : A,∆ $ P : C



The simply-typed λ-calculus [with products]

Pairing
Γ $ P : A Γ $ Q : B
Γ $ xP,Qy : Aˆ B

Left projection
Γ $ P : Aˆ B
Γ $ π1 P : A

Right projection
Γ $ P : Aˆ B
Γ $ π2 P : B

Unit
Γ $ ˚ : 1



Execution of λ-terms

In order to compute a λ-term, one applies the β-rule

pλx.PqQ ÝÑβ P rx :“ Qs

which substitutes the argument Q for every instance of the variable x in the
body P of the function. One may also apply the η-rule:

P ÝÑη λx. pPxq



Proof invariants

Every ccc D induces a proof invariant r´s modulo execution

free-cccpC q D

C

r´s

interpretation of atomsatoms

A purely syntactic and type-theoretic construction



An apparent obstruction to duality

Self-duality in cartesian closed categories



Duality in a boolean algebra

Negation defines a bijection

B

negation

��

K Bop

negation

]]

between the boolean algebra B and its opposite boolean algebra Bop.



Duality in a category

One would like to think that negation defines an equivalence

C

negation

��

K C op

negation

]]

between a cartesian closed category C and its opposite category C op.



However, in a cartesian closed category...

Suppose that the category C has an initial object 0. Then,

Every object Aˆ 0 is also initial.

The reason is that

C pAˆ 0 , B q � C p 0 , A ñ B q � singleton

for every object B of the category C .



However, in a cartesian closed category...

Suppose that the category C has an initial object 0. Then,

Every object Aˆ 0 is initial... and thus isomorphic to 0.

The reason is that

C pAˆ 0 , B q � C p 0 , A ñ B q � singleton

for every object B of the category C .



However, in a cartesian closed category...

Every morphism f : A ÝÑ 0 is an isomorphism.

Given such a morphism f : A Ñ 0, consider the morphism h : A Ñ Aˆ 0
making the diagram commute:

A

f

��

id

��

h
��

Aˆ 0

π1
||

π2
""A 0



In a self-dual cartesian closed category...

Homp A , B q � Homp Aˆ 1 , B q

� Homp 1 , A ñ B q

� Homp  pA ñ Bq ,  1 q

� Homp  pA ñ Bq , 0 q

� empty or singleton

Hence, every such self-dual category C is a preorder !



The microcosm principle

An idea coming from higher-dimensional algebra



The microcosm principle

SIMPLY SHUT UP !!!

No contradiction (thus no formal logic) can emerge in a tyranny...



A microcosm principle in algebra
rBaez & Dolan 1997s

The definition of a monoid

M ˆ M ÝÑ M

requires the ability to define a cartesian product of sets

A , B ÞÑ Aˆ B

Structure at dimension 0 requires structure at dimension 1



A microcosm principle in algebra
rBaez & Dolan 1997s

The definition of a cartesian category

C ˆ C ÝÑ C

requires the ability to define a cartesian product of categories

A , B ÞÑ A ˆB

Structure at dimension 1 requires structure at dimension 2



A similar microcosm principle in logic

The definition of a cartesian closed category

C op ˆ C ÝÑ C

requires the ability to define the opposite of a category

A ÞÑ A op

Hence, the “implication” at level 1 requires a “negation” at level 2



An automorphism in Cat
The 2-functor

op : Cat ÝÑ Cat opp2q

transports every natural transformation

C D

F

G

θ

to a natural transformation in the opposite direction:

C op D op

F op

G op

θ op

ÝÑ requires a braiding on V in the case of V -enriched categories



Chiralities

A bilateral account of categories



From categories to chiralities

This leads to a slightly bizarre idea:

decorrelate the category C from its opposite category C op

So, let us define a chirality as a pair of categories pA ,Bq such that

A � C B � C op

for some category C .

Here � means equivalence of category



Chirality

More formally:

Definition:

A chirality is a pair of categories pA ,Bq equipped with an equivalence:

A equivalence B op

p´q˚

˚p´q



A 2-categorical justification

Let Chir denote the 2-category with

B chiralities as objects

B chirality homomorphism as 1-dimensional cells

B chirality transformations as 2-dimensional cells

Proposition. The 2-category Chir is biequivalent to the 2-category Cat.



Cartesian closed chiralities

A 2-sided account of cartesian closed categories



Cartesian chiralities

Definition. A cartesian chirality is a chirality

B whose category A has finite products noted

a1 ^ a2 true

B whose category B has finite sums noted

b1 _ b2 f alse



Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality

pA ,^, trueq pB,_, f alseq

equipped with a pseudo-action

_ : B ˆ A ÝÑ A

and a bijection

A p a1 ^ a2 , a3 q � A p a1 , a˚2 _ a3 q

natural in a1 , a2 and a3.



Dictionary

The pseudo-action

_ : B ˆ A ÝÑ A

reflects the implication

implies : C op ˆ C ÝÑ C



Dictionary

The isomorphism of the pseudo-action

p b1 _ b2 q _ a � b1 _ p b2 _ a q

reflects the familiar isomorphism

p x1 and x2 q implies y � x1 implies p x2 implies y q

of cartesian closed categories.



Dictionary continued

The isomorphism

A p a1 ^ a2 , a3 q � A p a2 , a˚1 _ a3 q

reflects the familiar isomorphism

A p x and y , z q � A p y , x implies z q

of cartesian closed categories.



Key observation

The isomorphism

a1 implies a2 � a˚1 _ a2

deserves the name of

« classical decomposition of the implication »

although we work here in a cartesian closed category...



Key observation

This means that the decomposition

a1 implies a2 � a˚1 _ a2

is a principle of logic which comes from the 2-dimensional duality

C ÞÑ C op

rather than from the 1-dimensional duality

A ÞÑ A ˚

specific to classical logic or to linear logic.



Isbell duality compared to

Dedekind-MacNeille completion

A comparison between orders and categories



Ideal completion

Every partial order A generates a free complete
Ž

-lattice pA

A ÝÑ pA

whose elements are the downward closed subsets of A, with

ϕ ď
pA ψ ðñ ϕ Ď ψ.

pA “ Aop ñ t0, 1u



Free colimit completions of categories

Every small category C generates a free cocomplete category P C

C ÝÑ P C

whose elements are the presheaves over C , with

ϕ ÝÑP C ψ ðñ ϕ
natural
ÝÑ ψ.

P C “ C op ñ Set



Contravariant presheaves

x

ϕ(f)

y

f

Y

X

ϕ(Y )

ϕ(X)

C

Replace downward closed sets



Filter completion

Every partial order A generates a free complete
Ź

-lattice qA

A ÝÑ qA

whose elements are the upward closed subsets of A, with

ϕ ď
qA ψ ðñ ϕ Ě ψ.

qA “ pA ñ t0, 1u qop



Free limit completions of categories

Every small category C generates a free complete category Q C

C ÝÑ Q C

whose elements are the covariant presheaves over C , with

ϕ ÝÑQ C ψ ðñ ϕ
natural
ÐÝ ψ.

Q C “ P pC opqop “ pC ñ Set qop



Covariant presheaves

x

ϕ(f)

y

f

Y

X

ϕ(Y )

ϕ(X)

C

Replaces upward closed sets



The Dedekind-MacNeille completion

A Galois connection

pA

L

��

K qA

R

\\

Lpϕq “ t y | @x P ϕ, x ďA y u

Rpψq “ t x | @y P ψ, x ďA y u

ϕ Ď Rpψq ðñ @x P ϕ, y P ψ, x ďA y ðñ Lpϕq Ě ψ

The completion keeps the pairs pϕ,ψq such that ψ “ Lpϕq and ϕ “ Rpψq



The Isbell conjugation

One obtains the adjunction

P C

L

  

K Q C

R

__

Lpϕq : Y ÞÑ P C pϕ,Yq “
ş

XPC ϕpXq ñ hompX,Yq

Rpψq : X ÞÑ Q C pX, ψq “
ş

YPC ψpYq ñ hompX,Yq



The Isbell conjugation

The adjunction

P C

L

  

K Q C

R

__

comes from the natural bijections

P C pϕ,Rpψqq �
ş

X,YPC ϕpXq ˆ ψpYq ñ hompX,Yq � Q C pLpϕq, ψq



The Isbell conjugation

Proposition. Suppose given a contravariant presheaf

ϕ : C op ÝÑ Set

which defines a small colimit in the original category C .

In that case, Lpϕq is representable and

R ˝ Lpϕq � colimϕ.

Unfortunately, the Isbell envelope does not have limit nor colimits...



Back to the fundamental symmetry

What does the chirality tell us about games?



Duality

Proponent
Program

plays the game

A

Opponent
Environment
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Negation permutes the rôles of Proponent and Opponent



Duality

Opponent
Environment

plays the game

 A

Proponent
Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent



Tensor product

b

Player and Opponent play the two games in parallel



Sum

‘

Proponent selects one component



Product

&

Opponent selects one component



Exponentials

b b b ¨ ¨ ¨

Opponent opens as many copies as necessary to beat Proponent



The category of simple games

An idea dating back to André Joyal in 1977



Simple games

A simple game pM,P, λq consists of

M a finite set of moves,
P Ď M˚ a set of plays,

λ : M Ñ t´1,`1u a polarity function on moves

such that every play is alternating and starts by Opponent.

Alternatively, a simple game is an alternating decision tree.



Simple games

The boolean game B:

true

__

false

??

question

OO

Player in red
Opponent in blue



Deterministic strategies

A strategy σ is a set of alternating plays of even-length

s “ m1 ¨ ¨ ¨ m2k

such that:

– σ contains the empty play,

– σ is closed by even-length prefix:

@s,@m,n P M, s ¨m ¨ n P σ ñ s P σ

– σ is deterministic:

@s P σ,@m,n1,n2 P M, s ¨m ¨ n1 P σ and s ¨m ¨ n2 P σ ñ n1 “ n2.



Three strategies on the boolean game B

true

__

false

??

question

OO

Player in red
Opponent in blue



Total strategies

A strategy σ is total when

– for every play s of the strategy σ

– for every Opponent move m such that s ¨m is a play

there exists a Proponent move n such that s ¨m ¨ n is a play of σ.



Two total strategies on the boolean game B

true

__

false

??

question

OO

Player in red
Opponent in blue



Tensor product

Given two simple games A and B, define

A b B

as the simple game

M AbB = MA ` MB

λAbB = r λA , λB s

P AbB = PA b PB

where PA b PB denotes the set of alternating plays in M ˚
AbB

obtained by interleaving a play s P PA and a play t P PB.



Linear implication

Given two simple games A and B, define

A ( B

as the simple game

M A(B = MA ` MB

λA(B = r ´λA , λB s

P A(B = PA ( PB

where PA( PB denotes the set of alternating plays in M ˚
A(B

obtained by interleaving a play s P PA and a play t P PB.



A category of simple games

The category Games has

– the simple games as objects

– the total strategies of the simple game

σ P A ( B

as maps

σ : A ÝÑ B



The copycat strategy

The identity map

idA : A ÝÑ A

is the copycat strategy

idA : A ( A

defined as

idA “ t s P PA(A | s “ m1 ¨m1 ¨m2 ¨m2 ¨ ¨ ¨ mk ¨mk u



The copycat strategy

A id
ÝÑ A

m1
m1
m2

m2
m3

m3

... ...

mk
mk



Composition

Given two strategies

A σ
ÝÑ B τ

ÝÑ C

the composite strategy

A σ ; τ
ÝÑ C

is defined as

σ ; τ “
 

u P PA(C
ˇ

ˇ D s P σ , D t P τ
u�A “ s�A
s�B “ t�B
u�C “ t�C

(

The definition of composition is associative.



Illustration

1 true
ÝÑ B

id
ÝÑ B

q
q

true
true



Illustration

1 false
ÝÑ B

id
ÝÑ B

q
q

false
false



Illustration

1 true
ÝÑ B

negation
ÝÑ B

q
q

true
false



An important isomorphism

The simple game

p A b B q ( C

is isomorphic to the simple game

A ( p B ( C q

for all simple games A,B,C.

Here, isomorphism means tree isomorphism.



The category of simple games

Theorem.

The category Games is symmetric monoidal closed.

As such, it defines a model of the linear λ-calculus.



Illustration

pB ( B q b B
eval
ÝÑ B

q
q

bool
bool

f : B ( B , x : B $ f p x q : B



Illustration

pB ( B q b B
eval
ÝÑ B

q
q

q
q

bool
bool

f p bool q
f p bool q

f : B ( B , x : B $ f p x q : B



Illustration

pB ( B q
id
ÝÑ B ( B

q
q

q
q

bool
bool

f p bool q
f p bool q

f : B ( B $ λx . f p x q : B ( B



Currification

More generally, the transformation of the term

Γ , x : A $ f : B

into the term

Γ $ λ x . f : A ( B

does not alter the associated strategy, simply reorganizes it.



Cartesian product

Given two simple games A and B, define

A & B

as the simple game

M A&B = MA ` MB

λA&B = λA ` λB

P A&B = PA ‘ PB

where PA ‘ PB is the coalesced sum of the pointed sets PA and PB.

This means that every nonempty play in A&B is either in A or in B.



The cartesian product

For every simple game X, there exists an isomorphism

X ( A&B � pX ( Aq & pX ( Bq

This means that the game A&B is the cartesian product of A and B.



The cartesian product

For every game X, there exists a bijection between the strategies

X ÝÑ A&B

and the pair of strategies

X ÝÑ A X ÝÑ B.



The cartesian product

Guess the two strategies

π1 : A&B ( A π2 : A&B ( B

such that for every pair

f : X ( A g : X ( B

there exists a unique strategy

h : X ( A&B

making the diagram commute:

A

X h //

f ..

g 00

A&B

π1
;;

π2 ##B



Categories of games as completions

A categorical reconstruction of simple games



A categorical reconstruction

Definition. A duality functor on a category C is a functor

D : C ÝÑ C op

equipped with a natural bijection

ϕA,B : C pA,DBq � C pB,DAq.

Theorem.

The category Games is the free cartesian category C with a duality functor.



A categorical reconstruction

Observation. Every duality functor D induces an adjunction

C

D

��

K C op

D

]]

witnessed by the series of bijection:

C pA,DBq � C pB,DAq � C op pDA,Bq



A categorical reconstruction

So, the category Games coincides with the free adjunction

pA ,&, trueq

L

$$

K pB,‘, falseq

R

dd

where

B the category A has finite products noted & and true,

B the category B has finite sums noted ‘ and false.



A categorical reconstruction

Accordingly, the category ΣGames coincides with the free adjunction

pA ,‘, falseq

L

$$

K pB,&, trueq

R

dd

where

B the category A has finite sums noted ‘ and false,

B the category B has finite products noted & and true.

Here we note ΣC for the free category with finite sums generated by C



In particular...

B The simple game for the booleans is defined as

B “ R pLptrueq ‘ Lptrueq q

B The tensor product of two simple games

A “ R
à

i
LAi B “ R

à

j
LB j

is defined as

Ab B “ A < B & A = B

where

A < B “ R
à

i
LpAi b Bq A = B “ R

à

j
LpAb B jq



Work in progress

An adjunction

A

L
##

K B

R

bb

is called bicomplete when

B A has small colimits

B B has small limits

Ongoing work:

Describe the bicompletion extending Whitman’s construction to categories.


