Duality in Logic, Games and Categories

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS \& Université Paris Diderot

Duality Theory

Swiss Graduate Society for Logic and Philosophy of Science University of Bern, 28 May 2018

Logic

What are the symmetries of logic?

What are the symmetries of logic ?

What are the symmetries of logic ?

What are the symmetries of logic ?

A logical space-time

Emerges in the semantics of low level languages

The basic symmetry of logic

The logical discourse is symmetric between Player and Opponent

Claim: this symmetry is the foundation of logic

So, what can we learn from this basic symmetry?

De Morgan duality

The duality relates the conjunction and the disjunction of classical logic:

De Morgan duality in a constructive scenario

Can we make sense of this involutive negation

in a constructive logic like intuitionistic logic?

In particular, can we decompose the intuitionistic implication as

Guideline: game semantics

Every proof of formula A initiates a dialogue where

> Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages

The formal proof of the drinker's formula

Duality

Negation permutes the rôles of Proponent and Opponent

Duality

Negation permutes the rôles of Opponent and Proponent

Classical duality in a boolean algebra

Negation defines a bijection

between the boolean algebra B and its opposite boolean algebra $B^{o p}$.

Intuitionistic negation in a Heyting algebra

Every object \perp defines a Galois connection

between the Heyting algebra H and its opposite algebra $H^{o p}$.

$$
a \leqslant_{H} \perp \circ b \quad \Longleftrightarrow \quad b \leqslant_{H} a \multimap \perp \quad \Longleftrightarrow \quad a \multimap \perp \leqslant_{H^{o p}} b
$$

Double negation translation

Every object \perp defines a Galois connection

between the Heyting algebra H and its opposite algebra $H^{o p}$.

The negated elements of a Heyting algebra form a Boolean algebra.

The functorial approach to proof invariants

Cartesian closed categories

Cartesian closed categories

A cartesian category \mathscr{C} is closed when there exists a functor

$$
\Rightarrow: \mathscr{C}^{o p} \times \mathscr{C} \longrightarrow \mathscr{C}
$$

and a natural bijection

$$
\varphi_{A, B, C}: \mathscr{C}(A \times B, C) \cong \mathscr{C}(B, A \Rightarrow C)
$$

The free cartesian closed category

The objects of the category free-ccc($\mathscr{C})$ are the formulas

$$
A, B \quad::=X \quad|A \times B \quad| \quad A \Rightarrow B \mid 1
$$

where X is an object of the category \mathscr{C}.

The morphisms are the simply-typed λ-terms, modulo $\beta \eta$-conversion.

In particular, the $\beta \eta$-normal forms provide a "basis" of the free ccc.

The simply-typed λ-calculus

Variable	$\frac{\Gamma: A \vdash x: A}{}$
Abstraction	$\frac{\Gamma, x: A \vdash P: B}{\Gamma \vdash \lambda x \cdot P: A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P: A \Rightarrow B}{\Gamma, \Delta \vdash P Q: B}$
Weakening	$\frac{\Gamma \vdash P: B}{\Gamma, x: A \vdash P: B}$
Contraction	$\frac{\Gamma, x: A, y: A \vdash P: B}{\Gamma, z: A \vdash P[x, y \leftarrow z] B}$
Exchange	$\frac{\Gamma, x: A, y: B, \Delta \vdash P: C}{\Gamma, y: B, x: A, \Delta \vdash P: C}$

The simply-typed λ-calculus [with products]

$$
\frac{\Gamma \vdash P: A \quad \Gamma \vdash Q: B}{\Gamma \vdash\langle P, Q\rangle: A \times B}
$$

Left projection

$$
\frac{\Gamma \vdash P: A \times B}{\Gamma \vdash \pi_{1} P: A}
$$

Right projection

$$
\frac{\Gamma \vdash P: A \times B}{\Gamma \vdash \pi_{2} P: B}
$$

Unit

$$
\overline{\Gamma \vdash *: 1}
$$

Execution of λ-terms

In order to compute a λ-term, one applies the β-rule

$$
(\lambda x . P) Q \longrightarrow \beta P[x:=Q]
$$

which substitutes the argument Q for every instance of the variable x in the body P of the function. One may also apply the η-rule:

Proof invariants

Every ccc \mathscr{D} induces a proof invariant [-] modulo execution

A purely syntactic and type-theoretic construction

An apparent obstruction to duality

Self-duality in cartesian closed categories

Duality in a boolean algebra

Negation defines a bijection

between the boolean algebra B and its opposite boolean algebra $B^{o p}$.

Duality in a category

One would like to think that negation defines an equivalence

between a cartesian closed category \mathscr{C} and its opposite category \mathscr{C} op.

However, in a cartesian closed category...

Suppose that the category \mathscr{C} has an initial object 0 . Then,

Every object $A \times 0$ is also initial.

The reason is that

$$
\mathscr{C}(A \times 0, B) \cong \mathscr{C}(0, A \Rightarrow B) \cong \text { singleton }
$$

for every object B of the category \mathscr{C}.

However, in a cartesian closed category...

Suppose that the category \mathscr{C} has an initial object 0 . Then,

Every object $A \times 0$ is initial... and thus isomorphic to 0 .

The reason is that

$$
\mathscr{C}(A \times 0, B) \cong \mathscr{C}(0, A \Rightarrow B) \cong \text { singleton }
$$

for every object B of the category \mathscr{C}.

However, in a cartesian closed category...

$$
\text { Every morphism } f: A \longrightarrow 0 \text { is an isomorphism. }
$$

Given such a morphism $f: A \rightarrow 0$, consider the morphism $h: A \rightarrow A \times 0$ making the diagram commute:

In a self-dual cartesian closed category...

$$
\begin{aligned}
\operatorname{Hom}(A, B) & \cong \quad \operatorname{Hom}(A \times 1, B) \\
& \cong \quad \operatorname{Hom}(1, A \Rightarrow B) \\
& \cong \quad \operatorname{Hom}(\neg(A \Rightarrow B), \neg 1) \\
& \cong \quad \operatorname{Hom}(\neg(A \Rightarrow B), 0) \\
& \cong \quad \text { empty or singleton }
\end{aligned}
$$

Hence, every such self-dual category \mathscr{C} is a preorder!

The microcosm principle

An idea coming from higher-dimensional algebra

The microcosm principle

No contradiction (thus no formal logic) can emerge in a tyranny...

A microcosm principle in algebra [Baez \& Dolan 1997]

The definition of a monoid

$$
M \times M \quad \longrightarrow \quad M
$$

requires the ability to define a cartesian product of sets

$$
A, B \quad \mapsto \quad A \times B
$$

Structure at dimension 0 requires structure at dimension 1

A microcosm principle in algebra [Baez \& Dolan 1997]

The definition of a cartesian category

requires the ability to define a cartesian product of categories

$$
\mathscr{A}, \mathscr{B} \quad \mapsto \quad \mathscr{A} \times \mathscr{B}
$$

Structure at dimension 1 requires structure at dimension 2

A similar microcosm principle in logic

The definition of a cartesian closed category

$$
\mathscr{C}^{o p} \times \mathscr{C} \longrightarrow \mathscr{C}
$$

requires the ability to define the opposite of a category

$$
\mathscr{A} \mapsto \mathscr{A}^{o p}
$$

Hence, the "implication" at level 1 requires a "negation" at level 2

An automorphism in Cat

The 2-functor

$$
o p: \underline{\text { Cat }} \longrightarrow \text { Cat }^{o p(2)}
$$

transports every natural transformation

to a natural transformation in the opposite direction:

$\longrightarrow \quad$ requires a braiding on \mathscr{V} in the case of \mathscr{V}-enriched categories

Chiralities

A bilateral account of categories

From categories to chiralities

This leads to a slightly bizarre idea:

$$
\text { decorrelate the category } \mathscr{C} \text { from its opposite category } \mathscr{C} \circ p
$$

So, let us define a chirality as a pair of categories $(\mathscr{A}, \mathscr{B})$ such that

$$
\mathscr{A} \cong \mathscr{C} \quad \mathscr{B} \cong \mathscr{C}^{o p}
$$

for some category \mathscr{C}.
Here \cong means equivalence of category

Chirality

More formally:

Definition:

A chirality is a pair of categories $(\mathscr{A}, \mathscr{B})$ equipped with an equivalence:

A 2-categorical justification

Let Chir denote the 2-category with
\triangleright chiralities as objects
$\triangleright \quad$ chirality homomorphism as 1-dimensional cells
$\triangleright \quad$ chirality transformations as 2 -dimensional cells

Proposition. The 2-category Chir is biequivalent to the 2-category Cat.

Cartesian closed chiralities

A 2-sided account of cartesian closed categories

Cartesian chiralities

Definition. A cartesian chirality is a chirality
$\triangleright \quad$ whose category \mathscr{A} has finite products noted

$$
a_{1} \wedge a_{2} \quad \text { true }
$$

$\triangleright \quad$ whose category \mathscr{B} has finite sums noted

$$
b_{1} \vee b_{2} \quad \text { false }
$$

Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality

$$
(\mathscr{A}, \wedge, \text { true }) \quad(\mathscr{B}, \vee, \text { false })
$$

equipped with a pseudo-action

$$
v: \mathscr{B} \times \mathscr{A} \quad \longrightarrow \quad \mathscr{A}
$$

and a bijection

$$
\mathscr{A}\left(a_{1} \wedge a_{2}, a_{3}\right) \cong \mathscr{A}\left(a_{1}, a_{2}^{*} \vee a_{3}\right)
$$

natural in a_{1}, a_{2} and a_{3}.

Dictionary

The pseudo-action

$$
\vee: \mathscr{B} \times \mathscr{A} \quad \longrightarrow \mathscr{A}
$$

reflects the implication

$$
\text { implies }: \mathscr{C}^{o p} \times \mathscr{C} \longrightarrow \mathscr{C}
$$

Dictionary

The isomorphism of the pseudo-action

$$
\left(b_{1} \vee b_{2}\right) \vee a \cong b_{1} \vee\left(b_{2} \vee a\right)
$$

reflects the familiar isomorphism

$$
\left(x_{1} \text { and } x_{2}\right) \text { implies } y \cong x_{1} \text { implies }\left(x_{2} \text { implies } y\right)
$$

of cartesian closed categories.

Dictionary continued

The isomorphism

$$
\mathscr{A}\left(a_{1} \wedge a_{2}, a_{3}\right) \cong \mathscr{A}\left(a_{2}, a_{1}^{*} \vee a_{3}\right)
$$

reflects the familiar isomorphism

$$
\mathscr{A}(x \text { and } y, z) \cong \mathscr{A}(y, x \text { implies } z)
$$

of cartesian closed categories.

Key observation

The isomorphism

deserves the name of

> «classical decomposition of the implication»
although we work here in a cartesian closed category...

Key observation

This means that the decomposition

is a principle of logic which comes from the 2-dimensional duality

$$
\mathscr{C} \mapsto \mathscr{C}^{o p}
$$

rather than from the 1-dimensional duality

$$
A \mapsto A^{*}
$$

specific to classical logic or to linear logic.

Isbell duality compared to
 Dedekind-MacNeille completion

A comparison between orders and categories

Ideal completion

Every partial order A generates a free complete \bigvee-lattice \hat{A}

$$
A \longrightarrow \hat{A}
$$

whose elements are the downward closed subsets of A, with

$$
\varphi \leqslant \hat{A} \quad \psi \quad \Longleftrightarrow \quad \varphi \subseteq \psi
$$

Free colimit completions of categories

Every small category \mathscr{C} generates a free cocomplete category $\mathscr{P} \mathscr{C}$

$$
\mathscr{C} \quad \longrightarrow \quad \mathscr{P} \mathscr{C}
$$

whose elements are the presheaves over \mathscr{C}, with

$$
\varphi \quad \longrightarrow \mathscr{P C} \quad \psi \quad \Longleftrightarrow \quad \varphi \stackrel{\text { natural }}{\longrightarrow} \psi .
$$

Contravariant presheaves

Replace downward closed sets

Filter completion

Every partial order A generates a free complete \wedge-lattice \check{A}

$$
A \longrightarrow \check{A}
$$

whose elements are the upward closed subsets of A, with

$$
\varphi \leqslant \check{A} \psi \quad \Longleftrightarrow \quad \varphi \quad \psi
$$

Free limit completions of categories

Every small category \mathscr{C} generates a free complete category $\mathscr{Q} \mathscr{C}$

$$
\mathscr{C} \longrightarrow \mathscr{Q} \mathscr{C}
$$

whose elements are the covariant presheaves over \mathscr{C}, with

Covariant presheaves

Replaces upward closed sets

The Dedekind-MacNeille completion

A Galois connection

$$
\begin{aligned}
L(\varphi) & =\left\{y \mid \forall x \in \varphi, x \leqslant_{A} y\right\} \\
R(\psi) & =\left\{x \mid \forall y \in \psi, x \leqslant_{A} y\right\}
\end{aligned}
$$

$$
\varphi \subseteq R(\psi) \quad \Longleftrightarrow \quad \forall x \in \varphi, y \in \psi, x \leqslant_{A} y \quad \Longleftrightarrow \quad L(\varphi) \supseteq \psi
$$

The completion keeps the pairs (φ, ψ) such that $\psi=L(\varphi)$ and $\varphi=R(\psi)$

The Isbell conjugation

One obtains the adjunction

$$
\begin{aligned}
& L(\varphi): Y \mapsto \mathscr{P} \mathscr{C}(\varphi, Y)=\int_{X \in \mathscr{C}} \varphi(X) \Rightarrow \operatorname{hom}(X, Y) \\
& R(\psi): X \mapsto \mathscr{Q} \mathscr{C}(X, \psi)=\int_{Y \in \mathscr{C}} \psi(Y) \Rightarrow \operatorname{hom}(X, Y)
\end{aligned}
$$

The Isbell conjugation

The adjunction

comes from the natural bijections

$$
\mathscr{P} \mathscr{C}(\varphi, R(\psi)) \cong \int_{X, Y \in \mathscr{C}} \varphi(X) \times \psi(Y) \Rightarrow \operatorname{hom}(X, Y) \cong \mathscr{Q} \mathscr{C}(L(\varphi), \psi)
$$

The Isbell conjugation

Proposition. Suppose given a contravariant presheaf

$$
\varphi: \mathscr{C}^{\circ p} \longrightarrow \text { Set }
$$

which defines a small colimit in the original category \mathscr{C}.

In that case, $L(\varphi)$ is representable and

$$
R \circ L(\varphi) \cong \operatorname{colim} \varphi .
$$

Unfortunately, the Isbell envelope does not have limit nor colimits...

Back to the fundamental symmetry

What does the chirality tell us about games?

Duality

Negation permutes the rôles of Proponent and Opponent

Duality

Negation permutes the rôles of Opponent and Proponent

Tensor product

Player and Opponent play the two games in parallel

Sum

Proponent selects one component

Product

Opponent selects one component

Exponentials

Opponent opens as many copies as necessary to beat Proponent

The category of simple games

An idea dating back to André Joyal in 1977

Simple games

A simple game (M, P, λ) consists of

$$
\begin{gathered}
M \\
P \subseteq M^{*} \\
\lambda: M \rightarrow\{-1,+1\}
\end{gathered}
$$

a finite set of moves, a set of plays,
a polarity function on moves
such that every play is alternating and starts by Opponent.

Alternatively, a simple game is an alternating decision tree.

Simple games

The boolean game \mathbb{B} :

Player in red
Opponent in blue

Deterministic strategies

A strategy σ is a set of alternating plays of even-length

$$
s=m_{1} \cdots m_{2 k}
$$

such that:

- σ contains the empty play,
- σ is closed by even-length prefix:

$$
\forall s, \forall m, n \in M, \quad s \cdot m \cdot n \in \sigma \Rightarrow s \in \sigma
$$

- σ is deterministic:

$$
\forall s \in \sigma, \forall m, n_{1}, n_{2} \in M, \quad s \cdot m \cdot n_{1} \in \sigma \text { and } s \cdot m \cdot n_{2} \in \sigma \Rightarrow n_{1}=n_{2} .
$$

Three strategies on the boolean game \mathbb{B}

Total strategies

A strategy σ is total when

- for every play s of the strategy σ
- for every Opponent move m such that $s \cdot m$ is a play there exists a Proponent move n such that $s \cdot m \cdot n$ is a play of σ.

Two total strategies on the boolean game \mathbb{B}

Tensor product

Given two simple games A and B, define

$$
A \otimes B
$$

as the simple game

$$
\begin{aligned}
M_{A \otimes B} & =M_{A}+M_{B} \\
\lambda_{A \otimes B} & =\left[\lambda_{A}, \lambda_{B}\right] \\
P_{A \otimes B} & =P_{A} \otimes P_{B}
\end{aligned}
$$

where $P_{A} \otimes P_{B}$ denotes the set of alternating plays in $M_{A \otimes B}^{*}$ obtained by interleaving a play $s \in P_{A}$ and a play $t \in P_{B}$.

Linear implication

Given two simple games A and B, define

$$
A \quad \multimap \quad B
$$

as the simple game

$$
\begin{aligned}
M_{A \multimap B} & =M_{A}+M_{B} \\
\lambda_{A \multimap B} & =\left[-\lambda_{A}, \lambda_{B}\right] \\
P_{A \multimap B} & =P_{A} \multimap P_{B}
\end{aligned}
$$

where $P_{A} \multimap P_{B}$ denotes the set of alternating plays in $M_{A \rightarrow B}^{*}$ obtained by interleaving a play $s \in P_{A}$ and a play $t \in P_{B}$.

A category of simple games

The category Games has

- the simple games as objects
- the total strategies of the simple game

$$
\sigma \in A \quad \multimap \quad B
$$

as maps

$$
\sigma: A \longrightarrow B
$$

The copycat strategy

The identity map

$$
i d_{A}: A \longrightarrow A
$$

is the copycat strategy

$$
i d_{A}: A \quad \multimap \quad A
$$

defined as

$$
i d_{A}=\left\{s \in P_{A \rightarrow A} \mid s=m_{1} \cdot m_{1} \cdot m_{2} \cdot m_{2} \cdots m_{k} \cdot m_{k}\right\}
$$

The copycat strategy

$$
\begin{aligned}
& A \xrightarrow{i d} \quad A \\
& m_{1} \\
& m_{1} \\
& m_{2} \\
& m_{2} \\
& m_{3} \\
& m_{3} \\
& m_{k} \\
& m_{k}
\end{aligned}
$$

Composition

Given two strategies

$$
A \quad \xrightarrow{\sigma} \quad B \quad \xrightarrow{\tau} \quad C
$$

the composite strategy

$$
A \quad \xrightarrow{\sigma ; \tau} C
$$

is defined as

$$
\sigma ; \tau=\left\{u \in P_{A \rightarrow C} \quad \mid \exists s \in \sigma, \exists t \in \tau \quad \begin{array}{l}
u_{\uparrow A}=s_{\uparrow A} \\
s_{\uparrow B}=t_{\uparrow B} \\
u_{\uparrow C}=t_{\uparrow C}
\end{array}\right\}
$$

The definition of composition is associative.

Illustration

$$
\begin{array}{ccc}
1 \xrightarrow{\text { true }} & \mathbb{B} & \xrightarrow{i d} \\
& & \mathbb{B} \\
& \\
& & \\
\text { true } & & \\
& & \\
& & \text { true }
\end{array}
$$

Illustration

$$
\begin{array}{ccc}
1 \xrightarrow{\text { false }} & \mathbb{B} & \xrightarrow{i d}
\end{array} \begin{gathered}
\mathbb{B} \\
\\
\\
\\
\\
\text { false }
\end{gathered} \quad \begin{gathered}
\mathrm{q} \\
\end{gathered}
$$

Illustration

$1 \xrightarrow{\text { true }} \mathbb{B} \xrightarrow{\text { negation }} \mathbb{B}$
q
true
false

An important isomorphism

The simple game

$$
(A \otimes B) \not \subset C
$$

is isomorphic to the simple game

$$
A \quad \multimap \quad\left(\begin{array}{lll}
B & \multimap & C
\end{array}\right.
$$

for all simple games A, B, C.

Here, isomorphism means tree isomorphism.

The category of simple games

Theorem.

The category Games is symmetric monoidal closed.

As such, it defines a model of the linear λ-calculus.

Illustration

Illustration

Illustration

Currification

More generally, the transformation of the term

$$
\Gamma, x: A \vdash f: B
$$

into the term

$$
\Gamma \vdash \lambda x \cdot f: A \quad \multimap \quad B
$$

does not alter the associated strategy, simply reorganizes it.

Cartesian product

Given two simple games A and B, define

$$
A \quad \& \quad B
$$

as the simple game

$$
\begin{aligned}
M_{A \& B} & =M_{A}+M_{B} \\
\lambda_{A \& B} & =\lambda_{A}+\lambda_{B} \\
P_{A \& B} & =P_{A} \oplus P_{B}
\end{aligned}
$$

where $P_{A} \oplus P_{B}$ is the coalesced sum of the pointed sets P_{A} and P_{B}.
This means that every nonempty play in $A \& B$ is either in A or in B.

The cartesian product

For every simple game X, there exists an isomorphism

This means that the game $A \& B$ is the cartesian product of A and B.

The cartesian product

For every game X, there exists a bijection between the strategies

$$
X \quad \longrightarrow \quad A \& B
$$

and the pair of strategies

$$
X \quad A \quad X \longrightarrow B .
$$

The cartesian product

Guess the two strategies

$$
\pi_{1}: A \& B \multimap A \quad \pi_{2}: A \& B \multimap B
$$

such that for every pair

$$
f: X \multimap A \quad g: X \multimap B
$$

there exists a unique strategy

$$
h: X \multimap A \& B
$$

making the diagram commute:

Categories of games as completions

A categorical reconstruction of simple games

A categorical reconstruction

Definition. A duality functor on a category \mathscr{C} is a functor

$$
D: \mathscr{C} \longrightarrow \mathscr{C}^{\text {op }}
$$

equipped with a natural bijection

$$
\varphi_{A, B}: \mathscr{C}(A, D B) \cong \mathscr{C}(B, D A) .
$$

Theorem.
The category Games is the free cartesian category \mathscr{C} with a duality functor.

A categorical reconstruction

Observation. Every duality functor D induces an adjunction

witnessed by the series of bijection:

$$
\mathscr{C}(A, D B) \cong \mathscr{C}(B, D A) \cong \mathscr{C}^{\circ p}(D A, B)
$$

A categorical reconstruction

So, the category Games coincides with the free adjunction

where
\triangleright the category \mathscr{A} has finite products noted \& and true,
\triangleright the category \mathscr{B} has finite sums noted \oplus and false.

A categorical reconstruction

Accordingly, the category Σ Games coincides with the free adjunction

where
\triangleright the category \mathscr{A} has finite sums noted \oplus and false,
\triangleright the category \mathscr{B} has finite products noted \& and true.
Here we note $\Sigma \mathscr{C}$ for the free category with finite sums generated by \mathscr{C}

In particular...

\triangleright The simple game for the booleans is defined as

$$
\mathbb{B}=R(L(\text { true }) \oplus L(\text { true }))
$$

\triangleright The tensor product of two simple games

$$
A=R \bigoplus_{i} L A_{i} \quad B=R \bigoplus_{j} L B_{j}
$$

is defined as

$$
A \otimes B=A \otimes B \quad \& \quad A \otimes B
$$

where

$$
A \otimes B=R \bigoplus_{i} L\left(A_{i} \otimes B\right) \quad A \otimes B=R \bigoplus_{j} L\left(A \otimes B_{j}\right)
$$

Work in progress

An adjunction

is called bicomplete when
$\triangleright \quad \mathscr{A}$ has small colimits
$\triangleright \quad \mathscr{B}$ has small limits

Ongoing work:

Describe the bicompletion extending Whitman's construction to categories.

