Duality in Logic, Games and Categories

Paul-André Melliès

Institut de Recherche en Informatique Fondamentale (IRIF) CNRS & Université Paris Diderot

Duality Theory

Swiss Graduate Society for Logic and Philosophy of Science University of Bern, 28 May 2018

Logic

Physics

What are the symmetries of logic?

What are the symmetries of logic ?

What are the symmetries of logic ?

What are the symmetries of logic ?

A logical space-time

Emerges in the semantics of low level languages

The basic symmetry of logic

The logical discourse is **symmetric** between Player and Opponent

Claim: this symmetry is the foundation of logic

So, what can we learn from this basic symmetry?

De Morgan duality

The duality relates the conjunction and the disjunction of classical logic:

$$(A \lor B)^* \cong B^* \land A^*$$

 $(A \land B)^* \cong B^* \lor A^*$

De Morgan duality in a constructive scenario

Can we make sense of this involutive negation

$$A^{**} \cong A$$

in a constructive logic like intuitionistic logic?

In particular, can we decompose the intuitionistic implication as

$$A \Rightarrow B \cong A^* \lor B$$

Guideline: game semantics

Every proof of formula *A* initiates a dialogue where

Proponent tries to convince Opponent

Opponent tries to refute Proponent

An interactive approach to logic and programming languages

The formal proof of the drinker's formula

Duality

Proponent Program plays the game A

Opponent Environment

plays the game

 $\neg A$

Negation permutes the rôles of Proponent and Opponent

Duality

Opponent Environment

plays the game

 $\neg A$

Proponent Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent

Classical duality in a boolean algebra

Negation defines a **bijection**

between the boolean algebra B and its opposite boolean algebra B^{op} .

Intuitionistic negation in a Heyting algebra

Every object \perp defines a Galois connection

between the Heyting algebra H and its opposite algebra H^{op} .

 $a \leq_H \bot \frown b \quad \iff \quad b \leq_H a \multimap \bot \quad \iff \quad a \multimap \bot \leq_{H^{op}} b$

Double negation translation

Every object \bot defines a Galois connection

between the Heyting algebra H and its opposite algebra H^{op} .

The negated elements of a Heyting algebra form a Boolean algebra.

The functorial approach to proof invariants

Cartesian closed categories

Cartesian closed categories

A cartesian category \mathscr{C} is closed when there exists a functor

 $\Rightarrow : \mathscr{C}^{op} \times \mathscr{C} \longrightarrow \mathscr{C}$

and a natural bijection

 $\varphi_{A,B,C} \quad : \quad \mathscr{C}(A \times B, C) \cong \mathscr{C}(B, A \Rightarrow C)$

The free cartesian closed category

The objects of the category free-ccc(\mathscr{C}) are the formulas $A, B ::= X | A \times B | A \Rightarrow B | 1$ where X is an object of the category \mathscr{C} .

The morphisms are the simply-typed λ -terms, modulo $\beta\eta$ -conversion.

In particular, the $\beta\eta$ -normal forms provide a "basis" of the free ccc.

The simply-typed λ -calculus

Variable	$\overline{x:A \vdash x:A}$
Abstraction	$\frac{\Gamma, \boldsymbol{x} : A \vdash P : B}{\Gamma \vdash \lambda \boldsymbol{x} \cdot P : A \Rightarrow B}$
Application	$\frac{\Gamma \vdash P : A \Rightarrow B \qquad \Delta \vdash Q : A}{\Gamma, \Delta \vdash PQ : B}$
Weakening	$\frac{\Gamma \vdash P : B}{\Gamma, x : A \vdash P : B}$
Contraction	$\frac{\Gamma, x : A, y : A \vdash P : B}{\Gamma, z : A \vdash P[x, y \leftarrow z] : B}$
Exchange	$\frac{\Gamma, x : A, y : B, \Delta \vdash P : C}{\Gamma, y : B, x : A, \Delta \vdash P : C}$

The simply-typed λ -calculus [with products]

Pairing	$\Gamma \vdash P : A \qquad \Gamma \vdash Q : B$
	$\Gamma \vdash \langle P, Q \rangle : A \times B$
Left projection	$\frac{\Gamma \vdash P : A \times B}{\Gamma \vdash \pi_1 P : A}$
Right projection	$\frac{\Gamma \vdash P : A \times B}{\Gamma \vdash \pi_2 P : B}$
Unit	<u> </u>

 $\overline{\Gamma \vdash *: 1}$

Execution of λ **-terms**

In order to compute a λ -term, one applies the β -rule

$$(\lambda x.P) Q \longrightarrow_{\beta} P[x := Q]$$

which substitutes the argument Q for every instance of the variable x in the body P of the function. One may also apply the η -rule:

$$P \longrightarrow_{\eta} \lambda x. (Px)$$

Proof invariants

Every ccc \mathscr{D} induces a proof invariant [-] modulo execution

A purely syntactic and type-theoretic construction

An apparent obstruction to duality

Self-duality in cartesian closed categories

Duality in a boolean algebra

Negation defines a **bijection**

between the boolean algebra B and its opposite boolean algebra B^{op} .

Duality in a category

One would like to think that negation defines an **equivalence**

between a cartesian closed category \mathscr{C} and its opposite category \mathscr{C}^{op} .

However, in a cartesian closed category...

Suppose that the category \mathscr{C} has an initial object 0. Then,

Every object $A \times 0$ is also initial.

The reason is that

 $\mathscr{C}(A \times 0, B) \cong \mathscr{C}(0, A \Rightarrow B) \cong singleton$

for every object *B* of the category \mathscr{C} .

However, in a cartesian closed category...

Suppose that the category \mathscr{C} has an initial object 0. Then,

Every object $A \times 0$ is initial... and thus isomorphic to 0.

The reason is that

 $\mathscr{C}(A \times 0, B) \cong \mathscr{C}(0, A \Rightarrow B) \cong singleton$

for every object *B* of the category \mathscr{C} .

However, in a cartesian closed category...

Every morphism $f : A \longrightarrow 0$ is an isomorphism.

Given such a morphism $f : A \rightarrow 0$, consider the morphism $h : A \rightarrow A \times 0$ making the diagram commute:

In a self-dual cartesian closed category...

$$Hom(A, B) \cong Hom(A \times 1, B)$$

$$\cong Hom(1, A \Rightarrow B)$$

$$\cong$$
 Hom $(\neg (A \Rightarrow B), \neg 1)$

$$\cong$$
 Hom $(\neg (A \Rightarrow B), 0)$

$$\cong$$
 empty or singleton

Hence, every such self-dual category \mathscr{C} is a preorder !

The microcosm principle

An idea coming from higher-dimensional algebra

The microcosm principle

No contradiction (thus no formal logic) can emerge in a tyranny...

A microcosm principle in algebra [Baez & Dolan 1997]

The definition of a monoid

requires the ability to define a cartesian product of sets

A , B \mapsto $A \times B$

Structure at dimension 0 requires structure at dimension 1

A microcosm principle in algebra [Baez & Dolan 1997]

The definition of a cartesian category

requires the ability to define a cartesian product of categories

 \mathcal{A} , \mathcal{B} \mapsto $\mathcal{A} \times \mathcal{B}$

Structure at dimension 1 requires structure at dimension 2

A similar microcosm principle in logic

The definition of a cartesian **closed** category

 $\mathscr{C}^{op} \quad \times \quad \mathscr{C} \quad \longrightarrow \quad \mathscr{C}$

requires the ability to define the **opposite** of a category

 $\mathscr{A} \mapsto \mathscr{A}^{op}$

Hence, the "implication" at level 1 requires a "negation" at level 2

An automorphism in Cat

The 2-functor

transports every natural transformation

to a natural transformation in the opposite direction:

 \rightarrow requires a braiding on \mathscr{V} in the case of \mathscr{V} -enriched categories
Chiralities

A bilateral account of categories

From categories to chiralities

This leads to a slightly bizarre idea:

decorrelate the category \mathscr{C} from its opposite category \mathscr{C}^{op}

So, let us define a **chirality** as a pair of categories $(\mathscr{A}, \mathscr{B})$ such that

 $\mathscr{A} \cong \mathscr{C} \qquad \mathscr{B} \cong \mathscr{C}^{op}$

for some category \mathscr{C} .

Here \cong means **equivalence** of category

Chirality

More formally:

Definition:

A chirality is a pair of categories $(\mathscr{A}, \mathscr{B})$ equipped with an equivalence:

A 2-categorical justification

Let *Chir* denote the 2-category with

- ▷ chiralities as objects
- ▷ chirality homomorphism as 1-dimensional cells
- ▷ chirality transformations as 2-dimensional cells

Proposition. The 2-category <u>*Chir*</u> is biequivalent to the 2-category <u>*Cat*</u>.

Cartesian closed chiralities

A 2-sided account of cartesian closed categories

Cartesian chiralities

Definition. A cartesian chirality is a chirality

▷ whose category *A* has **finite products** noted

 $a_1 \wedge a_2$ true

 \triangleright whose category \mathscr{B} has **finite sums** noted

 $b_1 \lor b_2$ false

Cartesian closed chiralities

Definition. A cartesian closed chirality is a cartesian chirality

 $(\mathscr{A}, \wedge, true)$ $(\mathscr{B}, \vee, false)$

equipped with a pseudo-action

$$\vee \quad : \quad \mathscr{B} \quad \times \quad \mathscr{A} \quad \longrightarrow \quad \mathscr{A}$$

and a bijection

$$\mathscr{A}(a_1 \land a_2, a_3) \cong \mathscr{A}(a_1, a_2^* \lor a_3)$$

natural in a_1 , a_2 and a_3 .

Dictionary

The pseudo-action

 $\vee : \mathscr{B} \times \mathscr{A} \longrightarrow \mathscr{A}$

reflects the implication

implies : $\mathscr{C}^{op} \times \mathscr{C} \longrightarrow \mathscr{C}$

Dictionary

The isomorphism of the pseudo-action

 $(b_1 \lor b_2) \lor a \cong b_1 \lor (b_2 \lor a)$

reflects the familiar isomorphism

 $(x_1 \text{ and } x_2) \text{ implies } y \cong x_1 \text{ implies } (x_2 \text{ implies } y)$

of cartesian closed categories.

Dictionary continued

The isomorphism

$$\mathscr{A}(a_1 \land a_2, a_3) \cong \mathscr{A}(a_2, a_1^* \lor a_3)$$

reflects the familiar isomorphism

$$\mathscr{A}(x \text{ and } y, z) \cong \mathscr{A}(y, x \text{ implies } z)$$

of cartesian closed categories.

Key observation

The isomorphism

$$a_1 \text{ implies } a_2 \cong a_1^* \lor a_2$$

deserves the name of

« classical decomposition of the implication »

although we work here in a cartesian closed category...

Key observation

This means that the decomposition

$$a_1 \text{ implies } a_2 \cong a_1^* \lor a_2$$

is a principle of logic which comes from the 2-dimensional duality

 $\mathscr{C} \mapsto \mathscr{C}^{op}$

rather than from the 1-dimensional duality

 $A \mapsto A^*$

specific to classical logic or to linear logic.

Isbell duality compared to Dedekind-MacNeille completion

A comparison between orders and categories

Ideal completion

Every partial order A generates a free complete \bigvee -lattice \widehat{A}

 $A \longrightarrow \hat{A}$

whose elements are the downward closed subsets of A, with

$$\varphi \leqslant_{\widehat{A}} \psi \iff \varphi \subseteq \psi.$$

$$\widehat{A} = A^{op} \Rightarrow \{0,1\}$$

Free colimit completions of categories

Every small category \mathscr{C} generates a free cocomplete category $\mathscr{P} \mathscr{C}$

 $\mathscr{C} \longrightarrow \mathscr{P}\mathscr{C}$

whose elements are the presheaves over \mathscr{C} , with

 $\varphi \longrightarrow \mathscr{PC} \quad \psi \quad \iff \quad \varphi \stackrel{natural}{\longrightarrow} \quad \psi.$

$$\mathscr{PC} = \mathscr{C}^{op} \Rightarrow Set$$

Contravariant presheaves

Replace downward closed sets

Filter completion

Every partial order A generates a free complete \bigwedge -lattice \check{A}

 $A \longrightarrow \check{A}$

whose elements are the upward closed subsets of A, with

$$arphi \ \leqslant_{\widecheck{A}} \ \psi \ \iff \ arphi \ \supseteq \ \psi.$$

$$\check{A} = (A \implies \{0,1\})^{op}$$

Free limit completions of categories

Every small category \mathscr{C} generates a free complete category \mathscr{QC}

 $\mathscr{C} \longrightarrow \mathscr{QC}$

whose elements are the covariant presheaves over \mathscr{C} , with

$$\varphi \longrightarrow_{\mathscr{QC}} \psi \iff \varphi \stackrel{natural}{\leftarrow} \psi.$$

$$\mathscr{QC} = \mathscr{P}(\mathscr{C}^{op})^{op} = (\mathscr{C} \Rightarrow Set)^{op}$$

Covariant presheaves

Replaces upward closed sets

The Dedekind-MacNeille completion

A Galois connection

The completion keeps the pairs (φ, ψ) such that $\psi = L(\varphi)$ and $\varphi = R(\psi)$

The Isbell conjugation

One obtains the adjunction

$$\begin{split} L(\varphi) &: Y \mapsto \mathscr{PC}(\varphi, Y) = \int_{X \in \mathscr{C}} \varphi(X) \Rightarrow hom(X, Y) \\ R(\psi) &: X \mapsto \mathscr{QC}(X, \psi) = \int_{Y \in \mathscr{C}} \psi(Y) \Rightarrow hom(X, Y) \end{split}$$

The Isbell conjugation

comes from the natural bijections

 $\mathscr{PC}(\varphi, R(\psi)) \cong \int_{X,Y \in \mathscr{C}} \varphi(X) \times \psi(Y) \Rightarrow hom(X,Y) \cong \mathscr{QC}(L(\varphi),\psi)$

The Isbell conjugation

Proposition. Suppose given a contravariant presheaf $\varphi : \mathscr{C}^{op} \longrightarrow Set$

which defines a small colimit in the original category \mathscr{C} .

In that case, $L(\varphi)$ is representable and

 $R \circ L(\varphi) \cong \operatorname{colim} \varphi.$

Unfortunately, the Isbell envelope does not have limit nor colimits...

Back to the fundamental symmetry

What does the chirality tell us about games?

Duality

Proponent Program plays the game A

Opponent Environment

plays the game

 $\neg A$

Negation permutes the rôles of Proponent and Opponent

Duality

Opponent Environment

plays the game

 $\neg A$

Proponent Program

plays the game

A

Negation permutes the rôles of Opponent and Proponent

Tensor product

Player and Opponent play the two games in parallel

Sum

Proponent selects one component

Product

Opponent selects one component

Exponentials

Opponent opens as many copies as necessary to beat Proponent

The category of simple games

An idea dating back to André Joyal in 1977

Simple games

A simple game (M, P, λ) consists of

 $\begin{array}{ll} M & \mbox{a finite set of moves}, \\ P \subseteq M^* & \mbox{a set of plays}, \\ \lambda: M \rightarrow \{-1, +1\} & \mbox{a polarity function on moves} \end{array}$

such that every play is alternating and starts by Opponent.

Alternatively, a simple game is an alternating decision tree.

Simple games

The boolean game \mathbb{B} :

Deterministic strategies

A strategy σ is a set of alternating plays of even-length

 $s = m_1 \cdots m_{2k}$

such that:

- $-\sigma$ contains the empty play,
- $-\sigma$ is closed by even-length prefix:

 $\forall s, \forall m, n \in M, \qquad s \cdot m \cdot n \in \sigma \implies s \in \sigma$

– σ is **deterministic**:

 $\forall s \in \sigma, \forall m, n_1, n_2 \in M, \quad s \cdot m \cdot n_1 \in \sigma \text{ and } s \cdot m \cdot n_2 \in \sigma \Rightarrow n_1 = n_2.$

Three strategies on the boolean game ${\rm \mathbb B}$

Total strategies

A strategy σ is **total** when

- for every play s of the strategy σ
- for every Opponent move m such that $s \cdot m$ is a play

there exists a Proponent move *n* such that $s \cdot m \cdot n$ is a play of σ .
Two total strategies on the boolean game ${\mathbb B}$

Tensor product

Given two simple games A and B, define

 $A \otimes B$

as the simple game

 $M_{A\otimes B} = M_A + M_B$ $\lambda_{A\otimes B} = [\lambda_A, \lambda_B]$ $P_{A\otimes B} = P_A \otimes P_B$

where $P_A \otimes P_B$ denotes the set of alternating plays in $M^*_{A \otimes B}$ obtained by interleaving a play $s \in P_A$ and a play $t \in P_B$.

Linear implication

Given two simple games A and B, define

$$A \multimap B$$

as the simple game

$$M_{A \to oB} = M_A + M_B$$
$$\lambda_{A \to oB} = [-\lambda_A, \lambda_B]$$
$$P_{A \to oB} = P_A - P_B$$

where $P_A \multimap P_B$ denotes the set of alternating plays in $M^*_{A \multimap B}$ obtained by interleaving a play $s \in P_A$ and a play $t \in P_B$.

A category of simple games

The category Games has

- the simple games as objects

- the total strategies of the simple game

 $\sigma \in A \multimap B$

as maps

$$\sigma \quad : \quad A \quad \longrightarrow \quad B$$

The copycat strategy

The identity map

$$id_A : A \longrightarrow A$$

is the **copycat** strategy

$$id_A$$
 : $A \multimap A$

defined as

 $id_A = \{ s \in P_{A \multimap A} \mid s = m_1 \cdot m_1 \cdot m_2 \cdot m_2 \cdots m_k \cdot m_k \}$

The copycat strategy

Composition

Given two strategies

 $\begin{array}{cccc} A & \stackrel{\sigma}{\longrightarrow} & B & \stackrel{\tau}{\longrightarrow} & C \\ \text{the composite strategy} & & & \\ & & & A & \stackrel{\sigma;\tau}{\longrightarrow} & C \\ \text{is defined as} & & & \end{array}$

$$\sigma; \tau = \left\{ \begin{array}{cc} u \in P_{A \multimap C} \\ u \upharpoonright s \in \sigma, \exists t \in \tau \\ u \upharpoonright c = t \upharpoonright B \\ u \upharpoonright c = t \upharpoonright C \end{array} \right\}$$

The definition of composition is associative.

An important isomorphism

The simple game

 $(A \otimes B) \multimap C$

is isomorphic to the simple game

$$A \multimap (B \multimap C)$$

for all simple games *A*, *B*, *C*.

Here, isomorphism means tree isomorphism.

The category of simple games

Theorem.

The category *Games* is symmetric monoidal closed.

As such, it defines a model of the linear λ -calculus.

 $f: \mathbb{B} \multimap \mathbb{B}$, $x: \mathbb{B} \vdash f(x): \mathbb{B}$

 $f: \mathbb{B} \multimap \mathbb{B}$, $x: \mathbb{B} \vdash f(x): \mathbb{B}$

 $f : \mathbb{B} \multimap \mathbb{B} \vdash \lambda x . f(x) : \mathbb{B} \multimap \mathbb{B}$

Currification

More generally, the transformation of the term

 Γ , $x : A \vdash f : B$

into the term

 $\Gamma \vdash \lambda x \cdot f : A \multimap B$

does not alter the associated strategy, simply reorganizes it.

Cartesian product

Given two simple games A and B, define

A & B

as the simple game

 $M_{A\&B} = M_A + M_B$ $\lambda_{A\&B} = \lambda_A + \lambda_B$ $P_{A\&B} = P_A \oplus P_B$

where $P_A \oplus P_B$ is the **coalesced sum** of the pointed sets P_A and P_B . This means that every **nonempty** play in *A*&*B* is either in *A* or in *B*.

The cartesian product

For every simple game *X*, there exists an isomorphism

This means that the game *A*&*B* is the **cartesian product** of *A* and *B*.

The cartesian product

For every game *X*, there exists a bijection between the strategies

 $X \longrightarrow A\&B$

and the pair of strategies

$$X \longrightarrow A \qquad \qquad X \longrightarrow B.$$

The cartesian product

Guess the two strategies

 $\pi_1 : A\&B \multimap A \qquad \qquad \pi_2 : A\&B \multimap B$

such that for every pair

 $f : X \multimap A$ $g : X \multimap B$

there exists a unique strategy

 $h : X \multimap A\&B$

making the diagram commute:

Categories of games as completions

A categorical reconstruction of simple games

Definition. A **duality functor** on a category \mathscr{C} is a functor

 $D : \mathscr{C} \longrightarrow \mathscr{C}^{op}$

equipped with a natural bijection

 $\varphi_{A,B}$: $\mathscr{C}(A,DB) \cong \mathscr{C}(B,DA).$

Theorem.

The category *Games* is the free cartesian category *C* with a duality functor.

Observation. Every duality functor *D* induces an adjunction

witnessed by the series of bijection:

 $\mathscr{C}(A, DB) \cong \mathscr{C}(B, DA) \cong \mathscr{C}^{op}(DA, B)$

So, the category Games coincides with the free adjunction

where

- ▷ the category *A* has finite products noted & and true,
- \triangleright the category \mathscr{B} has finite sums noted \oplus and false.

Accordingly, the category $\Sigma Games$ coincides with the free adjunction

where

- \triangleright the category \mathscr{A} has finite sums noted \oplus and false,
- \triangleright the category \mathscr{B} has finite products noted & and true.

Here we note $\Sigma \mathscr{C}$ for the free category with finite sums generated by \mathscr{C}

In particular...

▷ The simple game for the booleans is defined as

 $\mathbb{B} = R(L(\text{true}) \oplus L(\text{true}))$

▷ The tensor product of two simple games

$$A = R \bigoplus_{i} LA_{i} \qquad \qquad B = R \bigoplus_{j} LB_{j}$$

is defined as

$$A \otimes B = A \otimes B \& A \otimes B$$

where

$$A \otimes B = R \bigoplus_{i} L(A_i \otimes B) \qquad A \otimes B = R \bigoplus_{j} L(A \otimes B_j)$$

Work in progress

An adjunction

is called bicomplete when

- ▷ A has small colimits
- \triangleright \mathscr{B} has small limits

Ongoing work:

Describe the bicompletion extending Whitman's construction to categories.