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Introduction

@ A sheaf representation of an abstract algebra is a topological

decomposition of the algebra into simpler ‘stalks’.

@ A distributive lattice of commuting congruences has long been
known to be an essential ingredient for a ‘good’ sheaf
representation.

@ Our aims here:

e characterize these ‘good’ sheaf representations,
o dualize these sheaf representations using our characterization.

@ These results unify and generalize existing results on sheaf
representations and duality for Boolean products, MV-algebras,

Gelfand rings, and other algebras.
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Soft sheaves
©0000

Definition of étale space

o Let V be a variety of abstract algebras.

Let (Y, p) be a topological space.

Let (Ay)ycy be a Y-indexed family of V-algebras.

o Let E:=|
@ Suppose 7 is a topology on E such that

erAy, with p : E — Y the natural surjection.

o p:(E,7) > (Y,p) is a local homeomorphism: any point has
an open neighbourhood on which p has a right inverse.

o Every operation of A, is continuous in 74, .

Then p: (E,7) — (Y, p) is called an étale space of V-algebras.
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Soft sheaves
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Sheaf from an étale space

Let p: (E,7) — (Y, p) be an étale space of V-algebras.

For any U € p, write FU for the set of local sections over U:
FU :={s: U — E continuous s.t. pos=idy}.

o Note: FU is a subalgebra of [] ., Ay, and hence in V.

If U C V, there is a natural restriction map FV — FU.

F is called the sheaf associated to the étale space.
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Soft sheaves
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Definition of sheaf

@ A sheaf F on Y consists of the data:

o For each open U, a V-algebra FU (“local sections”);

o For each open U C V, a V-homomorphism —|y : FV — FU
(“'restriction maps");

such that F is functorial and has the patching property:

o For any open cover (U;);c; of an open set U, and any
“compatible family” of local sections (s;);¢/, i.e.,
silu.nu; = sjluny; for all i, j €1,

o there exists a unique s € FU such that s|y, = s; for all i € /.

@ FY is called the algebra of global sections of the sheaf F.

@ If Ais an algebra isomorphic to FY, then F is called a sheaf

representation of A.
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Soft sheaves
0000

Sheaves and étale spaces

The assignment which sends an étale space to its sheaf of local

sections is a bijection between étale spaces and sheaves.

Note: although a sheaf F is initially only defined on the open sets
of Y, we may use the associated étale space of F to define, for an

arbitrary subset S of Y, FS to be the set of local sections over S.
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Soft sheaves
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Sheaves and congruences

@ Let F be a sheaf representation of A over a space Y with

associated étale space p: E — Y.

@ For each subset S of Y, we have a congruence on A,
0F(S) 1= ker(—|s) = {(a, b) € A* | 555 = s}

@ In general, there is no reason for A — FS to be surjective; so
A/0F(S) may be a subalgebra of FS.

e But if it is surjective often enough, then a collection of

congruences suffices to describe the sheaf.
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Stably compact spaces
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Stably compact spaces

@ Many interesting sheaf representations use a base space which

is spectral or compact Hausdorff.

@ Stably compact spaces form a common generalization of these

two classes.
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Stably compact spaces
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Stably compact spaces

@ “Generalisation of compact Hausdorff to Ty-setting”

Stably compact space =

o To,

@ Sober,
@ Locally compact,

@ Intersection of compact saturated is compact.

A map between stably compact spaces is proper if it is continuous,

and the inverse image of any compact saturated set is compact.
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Stably compact spaces
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Co-compact dual and patch topology

e For any stably compact space (Y, p), the collection of
compact saturated sets, LY, is closed under finite unions and
arbitrary intersections. The co-compact dual of p, p?, is the

topology of complements of compact saturated sets.
o Fact: If (Y, p) is stably compact, then so is Y? := (Y, p?).
o Define pP := pV p?, the patch topology.
e Fact: (Y, pP) is a compact Hausdorff space.
o Let y <y’ <= y' € {y}, the specialization order of p.

e Fact: < is a closed subspace of (Y x Y, pP x pP).
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Stably compact spaces
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Compact ordered spaces

@ A compact ordered space is a tuple (Y, 7, <) where (Y, ) is
compact and < is a partial order on Y which is a closed subset
of the product Y x Y (Nachbin 1965).

@ So (Y, pP,<) is a compact ordered space whenever (Y, p) is
stably compact.

o Given a compact ordered space (Y, 7, <), denote by 7+ the
topology of open down-sets.

@ Then (Y, ") is a stably compact space, and (7+)? = 7.

The categories of stably compact spaces and compact ordered

spaces are isomorphic.
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Stably compact spaces
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Stone and Priestley duality

o Let A be a bounded distributive lattice.

Let X be the set of prime filters of A.

For any a € A, define a:={x € X | a € x}.

The Stone topology o on X is generated by the sets of the

form 3, for a € A.

@ The Priestley topology m on X is generated by the sets of the

form an (b)<, for a, b € A, and the Priestley order < is reverse

order inclusion.

@ The sets of the form 3 are exactly the compact-opens of

(X, o) and the clopen down-sets of (X, 7, <).
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Stably compact spaces
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Stone vs. Priestley duality

@ DL: category of bounded distributive lattices.

@ Stone (1937): DL is dually equivalent to Stone spaces, i.e.,
sober Ty spaces whose compact-open sets form a lattice basis
for the topology.

@ Priestley (1970): DL is dually equivalent to Priestley spaces,

i.e., totally order-disconnected compact ordered spaces.

Spectral spaces form a full subcategory of stably compact spaces,

which corresponds to the category of Priestley spaces under the
isomorphism between stably compact spaces and compact ordered

spaces.
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Stably compact spaces
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Soft sheaves

Definition
A sheaf F over a space Y is called soft if any local section over a
compact saturated subset K of Y can be extended to a global

section.

Here, a subset is saturated if it is an intersection of open sets.
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Sheaves and congruences
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Sheaves on stably compact spaces

@ Let F be a soft sheaf representation of an algebra A over a
stably compact space Y.

@ For every compact saturated set K of YT, we have the
congruence Og(K), and FK is isomorphic to A/0r(K).

Proposition
The function O : (KYT)°P — Con A is a frame homomorphism for

which any two congruences in the image commute.
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Sheaves and congruences
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From a frame homomorphism to a sheaf

o Let 0: (KYT)°P — Con A be a frame homomorphism for which
any two congruences in the image commute.

e Forany y € Y, Ty is compact-saturated, so we may define a
stalk A, by A/0(Ty).

e With an appropriate topology, Ey := UerAy is an étale

space over Y.

@ We denote by Fy the associated sheaf of local sections.

Theorem (Characterization of soft sheaves)

The assignments F — O and 6 — Fy are mutually inverse, up to

sheaf isomorphism.
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Sheaves and congruences
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Duality yoga

@ The Theorem shows that soft sheaf representations of A over
YT correspond to frame homomorphisms (Y T)°P — Con A

for which any two congruences in the image commute.

@ By definition, the open set frame, QY¥, of Y¥, consists of the
complements of the sets in KY7T.

o Thus, QY+ and (KYT)P are isomorphic.

@ Soft sheaf representations therefore also correspond to frame

homomorphisms QY+ — Con A for which any two congruences

in the image commute.
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Sheaves and duality
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The case of distributive lattices

@ Let A be a distributive lattice with Priestley space (X, m, <).
@ Priestley duality implies that the lattice of congruences on A is
isomorphic to the frame of open subsets of (X, 7).

@ Indeed, an isomorphism 14: Con A — QX is defined by

-~

eal6) = |J (3N (B)°).

(a,b)€b

@ Thus, frame homomorphisms QY+ — Con A may be viewed as
frame homomorphisms QY+ — QX.
@ The latter correspond to continuous functions X — Y¥, by

pointfree duality.
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Sheaves and duality
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Pointfree duality

Proposition (Papert & Strauss)
Let X and Y be sober Ty spaces. For every frame homomorphism

h: QY — QX, there is a unique continuous function f: X — Y
such that h = f~1.

This gives a dual equivalence between the category of sober Ty

spaces and the category of spatial frames.
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Sheaves and duality
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The dual of a sheaf

@ Let A be a distributive lattice with dual Priestley space X.
@ Let F be a soft sheaf representation of A over YT.

Then 6f is a frame homomorphism QY+ — Con A such that

any two congruences in the image commute.

Then ¢Ya0F: QY+ — QX is a frame homomorphism.

e Define gr to be the continuous function X — Y* dual to
YalF.
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Sheaves and duality
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The dual of a sheaf

A=FY — X = Pr(A)

L)

/ y \ vt
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Sheaves and duality
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Duality for commuting congruences

o To a soft sheaf representation F of A over YT, we have
associated a continuous function gr: X — Y.
@ How is the commutativity of congruences in the image of 6¢

reflected in gg?

Proposition

Let 61, 6> be congruences on A and Cy, C, the closed sets
corresponding to them, i.e., C; := X \ ¥a(0;). The following are
equivalent:

© The congruences 61 and 6, commute.

@ Forany x; € G, xo € G, if {i,j} = {1,2} and x; < x;j, then
there exists z € C; N G, such that x; < z < x;.
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Sheaves and duality
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Interpolating decompositions

Definition

Let X be a Priestley space and Y* a stably compact space. A
continuous function g: X — YV is called an interpolating
decomposition of X over Y if, for any x1,xo € X, whenever

x1 < xo, there exists z € X such that x; < z < x, and

a(2) > ax), a). 1
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Sheaves and duality
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Sheaves and duality

Theorem (Duality for soft sheaf representations)

Let A be a distributive lattice with Priestley space X, and Y a
compact ordered space.

Soft sheaf representations of A over YT correspond one-to-one to

interpolating decompositions of X over Y.
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Applications
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Boolean products

Our results generalize the following prototypes:

Theorem (Comer 1971, Burris & Werner 1980)

Boolean product representations of an algebra A are in a natural

one-to-one correspondence with relatively complemented

distributive lattices of permuting congruences on A.

N

Theorem (Gehrke 1991)

Boolean product representations of a distributive lattice

A— [l,ey Ay are in a natural one-to-one correspondence with
Boolean sum decompositions of the Stone dual space X of A into

the Stone dual spaces (X, ),cy of the lattices (Ay),cy.
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Applications
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MV-algebras

@ MV-algebras are the unit intervals in certain abelian groups

with a distributive lattice order.

@ The dual Priestley space of (the DL reduct of) an MV-algebra

admits at least two distinct interpolating decompositions.

@ Our result explains in a simple manner why MV-algebras admit

these two soft sheaf representations and how they are related.
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Applications
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Principal congruences of an MV-algebra

A simple but important fact in the representation theory of

MV-algebras is that

0:A — Con(A)

a — 9(3) = <(07 a)>Con(A)

is a bounded lattice homomorphism.

The image of this map is the lattice Congi,(A) of finitely generated
MV-algebra congruences of A. Thus, these congruences are

pairwise permuting.

The MV-spectrum of A, is the dual space, Y, of Cong,(A)
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Applications
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The MV-spectrum as a subspace of the dual space

Since A —» Conyin(A) is a bounded distributive lattice quotient, by

duality, Y < X may be seen as a closed subspace of X:

Y ={y € X |, is closed under @}

We will mainly consider Y in its spectral topology and its dual
spectral topology. These are equal to the subspace topologies for

the spectral and dual spectral topologies on X, respectively.
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Applications
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The MV-spectrum directly from the MV-algebra

The congruences of an MV-algebra are in 1-to-1 correspondence

with MV-ideals: non-empty downsets closed under @.

The MV-spectrum may also be seen as the set of those MV-ideals
that are prime in the sense that one of a© b(:= —(—a® b)) and
b© ais a member for all a,b € A. This is the same set Y C X.

The spectral topology on Y as determined on the previous slide is
also the hull-kernel or spectral topology corresponding to the
MV-ideals of A.
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Applications
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The maximal MV-spectrum

Given an MV-algebra, A, the subspace Z of Y of maximal
MV-ideals of A is called the maximal MV-spectrum. It is compact
Hausdorff, but not in general spectral.

o If A= the free n-generated MV-algebra, then Z is
homeomorphic to the cube [0, 1]” with the Euclidean topology.

o Free, embeds in C(]0,1]",]0,1]) but the embedding is not

unique.
e If Ais a Boolean algebra, then Z is its Stone dual space.

@ If Ais any chain, then Z is the one-point space.

o If A has infinitesimals, then we do not have A — C(Z, [0, 1]).
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Well-known facts from the literature:

The following are equivalent:
@ A bounded distributive lattice D is normal: avb=1 —
Jde,de AwithcAd=0andavd=1landcVvb=1.
e Each point in Pr(D) is below a unique maximal point.
@ The inclusion of the maximal points of the dual space of D
admits a continuous retraction
For any MV-algebra A, the lattice Cong,(A) is relatively normal
(that is, each interval [a, b] is a normal lattice).
Thus Y is a root-system, that is, Ty is a chain foreach y € Y, Z is

compact Hausdorff, and the map

m:Y — Z, y — unique maximal point above y

is a continuous retraction
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The map k

There is a continuous retraction k : (X,0P) — (Y,ot) (already

present in the work of Martinez)

This map may be given a simple description:
k(x)=max{ze X | L&, C L}

yielding

(Interpolation Lemma) If x < x’ then there is x” with

x <x"<x" and k(x")>k(x) and k(x") > k(xX')
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From X to Z without using the MV structure

Combining the two earlier retractions we get
mok:(X,oP) — (Z,0")

The kernel of this map is given by the relation x; Wx, iff there are

X1, Xy, X0 € X with
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Kaplansky's theorem

[Kaplansky 1947]
Let Zy, Zo> be compact Hausdorff spaces such that the lattices
C(Z1,10,1]) and C(2>,[0,1]) are isomorphic. Then Z; and Z; are

homeomorphic spaces.
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Kaplansky theorem for arbitrary MV-algebras

If Ay and Ay are MV-algebras having isomorphic lattice reducts,

then the max MV-spectra of Ay and A, are homeomorphic.

@ Note that the max MV-spectrum of an MV-algebra of the
form C(Z,[0,1]) is Z so that our result generalizes

Kaplansky's result.

Proof (sketch).

The maximal MV-spectrum can be reconstructed from the lattice

spectrum using the relation W. O
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