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Introduction

A sheaf representation of an abstract algebra is a topological

decomposition of the algebra into simpler ‘stalks’.

A distributive lattice of commuting congruences has long been

known to be an essential ingredient for a ‘good’ sheaf

representation.

Our aims here:

characterize these ‘good’ sheaf representations,

dualize these sheaf representations using our characterization.

These results unify and generalize existing results on sheaf

representations and duality for Boolean products, MV-algebras,

Gelfand rings, and other algebras.
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Definition of étale space

Let V be a variety of abstract algebras.

Let (Y , ρ) be a topological space.

Let (Ay )y∈Y be a Y -indexed family of V-algebras.

Let E :=
⊔

y∈Y Ay , with p : E � Y the natural surjection.

Suppose τ is a topology on E such that

p : (E , τ) � (Y , ρ) is a local homeomorphism: any point has

an open neighbourhood on which p has a right inverse.

Every operation of Ay is continuous in τ |Ay .

Then p : (E , τ) � (Y , ρ) is called an étale space of V-algebras.

4 / 37



Soft sheaves Stably compact spaces Sheaves and congruences Sheaves and duality Applications

Sheaf from an étale space

Let p : (E , τ) � (Y , ρ) be an étale space of V-algebras.

For any U ∈ ρ, write FU for the set of local sections over U:

FU := {s : U → E continuous s.t. p ◦ s = idU}.

Note: FU is a subalgebra of
∏

y∈U Ay , and hence in V.

If U ⊆ V , there is a natural restriction map FV → FU.

F is called the sheaf associated to the étale space.
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Definition of sheaf

A sheaf F on Y consists of the data:

For each open U, a V-algebra FU (“local sections”);

For each open U ⊆ V , a V-homomorphism −|U : FV → FU

(“restriction maps”);

such that F is functorial and has the patching property:

For any open cover (Ui )i∈I of an open set U, and any

“compatible family” of local sections (si )i∈I , i.e.,

si |Ui∩Uj = sj |Ui∩Uj for all i , j ∈ I ,

there exists a unique s ∈ FU such that s|Ui = si for all i ∈ I .

FY is called the algebra of global sections of the sheaf F .

If A is an algebra isomorphic to FY , then F is called a sheaf

representation of A.
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Sheaves and étale spaces

Fact
The assignment which sends an étale space to its sheaf of local

sections is a bijection between étale spaces and sheaves.

Note: although a sheaf F is initially only defined on the open sets

of Y , we may use the associated étale space of F to define, for an

arbitrary subset S of Y , FS to be the set of local sections over S .
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Sheaves and congruences

Let F be a sheaf representation of A over a space Y with

associated étale space p : E → Y .

For each subset S of Y , we have a congruence on A,

θF (S) := ker(−|S ) = {(a, b) ∈ A2 | sa|S = sb|S}.

In general, there is no reason for A→ FS to be surjective; so

A/θF (S) may be a subalgebra of FS .

But if it is surjective often enough, then a collection of

congruences suffices to describe the sheaf.
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Stably compact spaces

Many interesting sheaf representations use a base space which

is spectral or compact Hausdorff.

Stably compact spaces form a common generalization of these

two classes.
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Stably compact spaces

“Generalisation of compact Hausdorff to T0-setting”

Definition
Stably compact space =

T0,

Sober,

Locally compact,

Intersection of compact saturated is compact.

A map between stably compact spaces is proper if it is continuous,

and the inverse image of any compact saturated set is compact.
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Co-compact dual and patch topology

For any stably compact space (Y , ρ), the collection of

compact saturated sets, KY , is closed under finite unions and

arbitrary intersections. The co-compact dual of ρ, ρ∂ , is the

topology of complements of compact saturated sets.

Fact: If (Y , ρ) is stably compact, then so is Y ∂ := (Y , ρ∂).

Define ρp := ρ ∨ ρ∂ , the patch topology.

Fact: (Y , ρp) is a compact Hausdorff space.

Let y ≤ y ′ ⇐⇒ y ′ ∈ {y}, the specialization order of ρ.

Fact: ≤ is a closed subspace of (Y × Y , ρp × ρp).
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Compact ordered spaces

A compact ordered space is a tuple (Y , π,≤) where (Y , π) is

compact and ≤ is a partial order on Y which is a closed subset

of the product Y × Y (Nachbin 1965).

So (Y , ρp,≤) is a compact ordered space whenever (Y , ρ) is

stably compact.

Given a compact ordered space (Y , π,≤), denote by π↓ the

topology of open down-sets.

Then (Y , π↓) is a stably compact space, and (π↓)∂ = π↑.

Fact
The categories of stably compact spaces and compact ordered

spaces are isomorphic.
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Stone and Priestley duality

Let A be a bounded distributive lattice.

Let X be the set of prime filters of A.

For any a ∈ A, define â := {x ∈ X | a ∈ x}.

The Stone topology σ on X is generated by the sets of the

form â, for a ∈ A.

The Priestley topology π on X is generated by the sets of the

form â ∩ (b̂)c , for a, b ∈ A, and the Priestley order ≤ is reverse

order inclusion.

The sets of the form â are exactly the compact-opens of

(X , σ) and the clopen down-sets of (X , π,≤).
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Stone vs. Priestley duality

DL: category of bounded distributive lattices.

Stone (1937): DL is dually equivalent to Stone spaces, i.e.,

sober T0 spaces whose compact-open sets form a lattice basis

for the topology.

Priestley (1970): DL is dually equivalent to Priestley spaces,

i.e., totally order-disconnected compact ordered spaces.

Fact
Spectral spaces form a full subcategory of stably compact spaces,

which corresponds to the category of Priestley spaces under the

isomorphism between stably compact spaces and compact ordered

spaces.
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Soft sheaves

Definition
A sheaf F over a space Y is called soft if any local section over a

compact saturated subset K of Y can be extended to a global

section.

Here, a subset is saturated if it is an intersection of open sets.
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Sheaves on stably compact spaces

Let F be a soft sheaf representation of an algebra A over a

stably compact space Y ↑.

For every compact saturated set K of Y ↑, we have the

congruence θF (K ), and FK is isomorphic to A/θF (K ).

Proposition

The function θF : (KY ↑)op → ConA is a frame homomorphism for

which any two congruences in the image commute.
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From a frame homomorphism to a sheaf

Let θ : (KY ↑)op → ConA be a frame homomorphism for which

any two congruences in the image commute.

For any y ∈ Y , ↑y is compact-saturated, so we may define a

stalk Ay by A/θ(↑y).

With an appropriate topology, Eθ :=
⊔

y∈Y Ay is an étale

space over Y ↑.

We denote by Fθ the associated sheaf of local sections.

Theorem (Characterization of soft sheaves)

The assignments F 7→ θF and θ 7→ Fθ are mutually inverse, up to

sheaf isomorphism.
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Duality yoga

The Theorem shows that soft sheaf representations of A over

Y ↑ correspond to frame homomorphisms (KY ↑)op → ConA

for which any two congruences in the image commute.

By definition, the open set frame, ΩY ↓, of Y ↓, consists of the

complements of the sets in KY ↑.

Thus, ΩY ↓ and (KY ↑)op are isomorphic.

Soft sheaf representations therefore also correspond to frame

homomorphisms ΩY ↓ → ConA for which any two congruences

in the image commute.
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The case of distributive lattices

Let A be a distributive lattice with Priestley space (X , π,≤).

Priestley duality implies that the lattice of congruences on A is

isomorphic to the frame of open subsets of (X , π).

Indeed, an isomorphism ψA : ConA→ ΩX is defined by

ψA(θ) :=
⋃

(a,b)∈θ

(â ∩ (b̂)c ).

Thus, frame homomorphisms ΩY ↓ → ConA may be viewed as

frame homomorphisms ΩY ↓ → ΩX .

The latter correspond to continuous functions X → Y ↓, by

pointfree duality.
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Pointfree duality

Proposition (Papert & Strauss)

Let X and Y be sober T0 spaces. For every frame homomorphism

h : ΩY → ΩX , there is a unique continuous function f : X → Y

such that h = f −1.

This gives a dual equivalence between the category of sober T0

spaces and the category of spatial frames.
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The dual of a sheaf

Let A be a distributive lattice with dual Priestley space X .

Let F be a soft sheaf representation of A over Y ↑.

Then θF is a frame homomorphism ΩY ↓ → ConA such that

any two congruences in the image commute.

Then ψAθF : ΩY ↓ → ΩX is a frame homomorphism.

Define qF to be the continuous function X → Y ↓ dual to

ψAθF .
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The dual of a sheaf

A/y

A = FY

E

Y ↑

p

y

a

q−1(↑y)

q

Y ↓

X = Pr(A)

X

↑y

â
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Duality for commuting congruences

To a soft sheaf representation F of A over Y ↑, we have

associated a continuous function qF : X → Y ↓.

How is the commutativity of congruences in the image of θF

reflected in qF ?

Proposition
Let θ1, θ2 be congruences on A and C1, C2 the closed sets

corresponding to them, i.e., Ci := X \ ψA(θi ). The following are

equivalent:

1 The congruences θ1 and θ2 commute.

2 For any x1 ∈ C1, x2 ∈ C2, if {i , j} = {1, 2} and xi ≤ xj , then

there exists z ∈ C1 ∩ C2 such that xi ≤ z ≤ xj .
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Interpolating decompositions

Definition

Let X be a Priestley space and Y ↓ a stably compact space. A

continuous function q : X → Y ↓ is called an interpolating

decomposition of X over Y if, for any x1, x2 ∈ X , whenever

x1 ≤ x2, there exists z ∈ X such that x1 ≤ z ≤ x2 and

q(z) ≥ q(x1), q(x2).
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Sheaves and duality

Theorem (Duality for soft sheaf representations)

Let A be a distributive lattice with Priestley space X , and Y a

compact ordered space.

Soft sheaf representations of A over Y ↑ correspond one-to-one to

interpolating decompositions of X over Y ↓.
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Boolean products

Our results generalize the following prototypes:

Theorem (Comer 1971, Burris & Werner 1980)

Boolean product representations of an algebra A are in a natural

one-to-one correspondence with relatively complemented

distributive lattices of permuting congruences on A.

Theorem (Gehrke 1991)

Boolean product representations of a distributive lattice

A �
∏

y∈Y Ay are in a natural one-to-one correspondence with

Boolean sum decompositions of the Stone dual space X of A into

the Stone dual spaces (Xy )y∈Y of the lattices (Ay )y∈Y .
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MV-algebras

MV-algebras are the unit intervals in certain abelian groups

with a distributive lattice order.

The dual Priestley space of (the DL reduct of) an MV-algebra

admits at least two distinct interpolating decompositions.

Our result explains in a simple manner why MV-algebras admit

these two soft sheaf representations and how they are related.
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Principal congruences of an MV-algebra

A simple but important fact in the representation theory of

MV-algebras is that

θ : A −→ Con(A)

a 7−→ θ(a) = <(0, a)>Con(A)

is a bounded lattice homomorphism.

The image of this map is the lattice Confin(A) of finitely generated

MV-algebra congruences of A. Thus, these congruences are

pairwise permuting.

The MV-spectrum of A, is the dual space, Y , of Confin(A)
28 / 37



Soft sheaves Stably compact spaces Sheaves and congruences Sheaves and duality Applications

The MV-spectrum as a subspace of the dual space

Since A −� Confin(A) is a bounded distributive lattice quotient, by

duality, Y ↪→ X may be seen as a closed subspace of X :

Y = {y ∈ X | Iy is closed under ⊕}

We will mainly consider Y in its spectral topology and its dual

spectral topology. These are equal to the subspace topologies for

the spectral and dual spectral topologies on X , respectively.
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The MV-spectrum directly from the MV-algebra

The congruences of an MV-algebra are in 1-to-1 correspondence

with MV-ideals: non-empty downsets closed under ⊕.

The MV-spectrum may also be seen as the set of those MV-ideals

that are prime in the sense that one of a	 b(:= ¬(¬a⊕ b)) and

b 	 a is a member for all a, b ∈ A. This is the same set Y ⊆ X .

The spectral topology on Y as determined on the previous slide is

also the hull-kernel or spectral topology corresponding to the

MV-ideals of A.
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The maximal MV-spectrum

Given an MV-algebra, A, the subspace Z of Y of maximal

MV-ideals of A is called the maximal MV-spectrum. It is compact

Hausdorff, but not in general spectral.

Examples
If A = the free n-generated MV-algebra, then Z is
homeomorphic to the cube [0, 1]n with the Euclidean topology.

Freen embeds in C ([0, 1]n, [0, 1]) but the embedding is not

unique.

If A is a Boolean algebra, then Z is its Stone dual space.

If A is any chain, then Z is the one-point space.

If A has infinitesimals, then we do not have A ↪→ C (Z , [0, 1]).
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Well-known facts from the literature:
The following are equivalent:

A bounded distributive lattice D is normal: a ∨ b = 1 =⇒
∃c , d ∈ A with c ∧ d = 0 and a ∨ d = 1 and c ∨ b = 1.

Each point in Pr(D) is below a unique maximal point.

The inclusion of the maximal points of the dual space of D

admits a continuous retraction

For any MV-algebra A, the lattice Confin(A) is relatively normal

(that is, each interval [a, b] is a normal lattice).

Thus Y is a root-system, that is, ↑y is a chain for each y ∈ Y , Z is

compact Hausdorff, and the map

m : Y −→ Z , y 7→ unique maximal point above y

is a continuous retraction
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The map k

There is a continuous retraction k : (X , σp) −→ (Y , σ↓) (already

present in the work of Martínez)

This map may be given a simple description:

k(x) = max{z ∈ X | Ix ⊕ Iz ⊆ Ix}

yielding

(Interpolation Lemma) If x ≤ x ′ then there is x ′′ with

x ≤ x ′′ ≤ x ′ and k(x ′′) ≥ k(x) and k(x ′′) ≥ k(x ′)
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From X to Z without using the MV structure

Combining the two earlier retractions we get

m ◦ k : (X , σp) −→ (Z , σ↓)

The kernel of this map is given by the relation x1Wx2 iff there are

x ′1, x
′
2, x0 ∈ X with

x1

x ′1

x0

x ′2

x2
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Kaplansky’s theorem

[Kaplansky 1947]

Let Z1, Z2 be compact Hausdorff spaces such that the lattices

C (Z1, [0, 1]) and C (Z2, [0, 1]) are isomorphic. Then Z1 and Z2 are

homeomorphic spaces.
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Kaplansky theorem for arbitrary MV-algebras

Theorem
If A1 and A2 are MV-algebras having isomorphic lattice reducts,

then the max MV-spectra of A1 and A2 are homeomorphic.

Note that the max MV-spectrum of an MV-algebra of the

form C (Z , [0, 1]) is Z so that our result generalizes

Kaplansky’s result.

Proof (sketch).

The maximal MV-spectrum can be reconstructed from the lattice

spectrum using the relation W .
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