Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications

Sheaves and Duality

Mai Gehrke[°] Sam van Gool*

°CNRS and Université Côte d'Azur *University of Amsterdam

> 28 May 2018 SGSLPS 2018 Bern

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 00000000000000
Introduc	tion			

- A sheaf representation of an abstract algebra is a topological decomposition of the algebra into simpler 'stalks'.
- A distributive lattice of commuting congruences has long been known to be an essential ingredient for a 'good' sheaf representation.
- Our aims here:
 - characterize these 'good' sheaf representations,
 - dualize these sheaf representations using our characterization.
- These results unify and generalize existing results on sheaf representations and duality for Boolean products, MV-algebras, Gelfand rings, and other algebras.

000000 0000000	00	

- 2 Stably compact spaces
- Sheaves and congruences
- 4 Sheaves and duality

Soft sheaves ●0000	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000
Definitio	on of étale spac	ce		

- \bullet Let ${\mathcal V}$ be a variety of abstract algebras.
- Let (Y, ρ) be a topological space.
- Let $(A_y)_{y \in Y}$ be a Y-indexed family of V-algebras.
- Let $E := \bigsqcup_{y \in Y} A_y$, with $p : E \twoheadrightarrow Y$ the natural surjection.
- Suppose τ is a topology on E such that
 - p: (E, τ) → (Y, ρ) is a local homeomorphism: any point has an open neighbourhood on which p has a right inverse.
 - Every operation of A_y is continuous in $\tau|_{A_y}$.
- Then $p: (E, \tau) \twoheadrightarrow (Y, \rho)$ is called an étale space of \mathcal{V} -algebras.

Soft sheaves ○●○○○	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 00000000000000
Sheaf fro	om an étale sn	асе		

- Let $p: (E, \tau) \twoheadrightarrow (Y, \rho)$ be an étale space of \mathcal{V} -algebras.
- For any $U \in \rho$, write *FU* for the set of local sections over *U*:

 $FU := \{ s : U \to E \text{ continuous s.t. } p \circ s = \mathrm{id}_U \}.$

- Note: FU is a subalgebra of $\prod_{y \in U} A_y$, and hence in \mathcal{V} .
- If $U \subseteq V$, there is a natural restriction map $FV \rightarrow FU$.
- F is called the sheaf associated to the étale space.

Soft sheaves 00●00	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 0000000000000
Definitio	on of sheaf			

- A sheaf F on Y consists of the data:
 - For each open U, a V-algebra FU ("local sections");
 - For each open $U \subseteq V$, a \mathcal{V} -homomorphism $-|_U : FV \to FU$ ("restriction maps");
 - such that *F* is functorial and has the patching property:
 - For any open cover (U_i)_{i∈1} of an open set U, and any "compatible family" of local sections (s_i)_{i∈1}, i.e., s_i|_{U_i∩U_i} = s_i|_{U_i∩U_i} for all i, j ∈ I,
 - there exists a unique $s \in FU$ such that $s|_{U_i} = s_i$ for all $i \in I$.
- FY is called the algebra of global sections of the sheaf F.
- If A is an algebra isomorphic to FY, then F is called a sheaf representation of A.

Soft sheaves ocooco Sheaves and congruences ocooco

Applications

Sheaves and étale spaces

Fact

The assignment which sends an étale space to its sheaf of local sections is a bijection between étale spaces and sheaves.

Note: although a sheaf F is initially only defined on the open sets of Y, we may use the associated étale space of F to define, for an arbitrary subset S of Y, FS to be the set of local sections over S.

Soft sheaves 0000●	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 0000000000000
Sheaves	and congruend	ces		

- Let F be a sheaf representation of A over a space Y with associated étale space p: E → Y.
- For each subset S of Y, we have a congruence on A,

$$\theta_F(S) := \ker(-|_S) = \{(a, b) \in A^2 \mid s_a|_S = s_b|_S\}.$$

- In general, there is no reason for $A \to FS$ to be surjective; so $A/\theta_F(S)$ may be a subalgebra of FS.
- But if it is surjective often enough, then a collection of congruences suffices to describe the sheaf.

Soft sheaves	Stably compact spaces •000000	Sheaves and congruences	Sheaves and duality	Applications 000000000000000000000000000000000000

Stably compact spaces

- Many interesting sheaf representations use a base space which is spectral or compact Hausdorff.
- Stably compact spaces form a common generalization of these two classes.

Soft sheaves	Stably compact spaces 0000000	Sheaves and congruences	Sheaves and duality	Applications 00000000000000
Stably c	ompact spaces			

• "Generalisation of compact Hausdorff to T_0 -setting"

Definition
Stably compact space =
• <i>T</i> ₀ ,
• Sober,
 Locally compact,
 Intersection of compact saturated is compact.

A map between stably compact spaces is proper if it is continuous, and the inverse image of any compact saturated set is compact.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applicat
	000000			

Co-compact dual and patch topology

- For any stably compact space (Y, ρ), the collection of compact saturated sets, KY, is closed under finite unions and arbitrary intersections. The co-compact dual of ρ, ρ[∂], is the topology of complements of compact saturated sets.
- Fact: If (Y, ρ) is stably compact, then so is $Y^{\partial} := (Y, \rho^{\partial})$.
- Define $\rho^{p}:=\rho\vee\rho^{\partial}$, the patch topology.
- Fact: (Y, ρ^p) is a compact Hausdorff space.
- Let $y \leq y' \iff y' \in \overline{\{y\}}$, the specialization order of ρ .
- Fact: \leq is a closed subspace of $(Y \times Y, \rho^p \times \rho^p)$.

Soft sheaves	Stably compact spaces 000●000	Sheaves and congruences	Sheaves and duality	Applications 000000000000000
Compact	ordered space	S		

- A compact ordered space is a tuple (Y, π, ≤) where (Y, π) is compact and ≤ is a partial order on Y which is a closed subset of the product Y × Y (Nachbin 1965).
- So (Y, ρ^p, ≤) is a compact ordered space whenever (Y, ρ) is stably compact.
- Given a compact ordered space (Y, π, ≤), denote by π[↓] the topology of open down-sets.
- Then (Y, π^{\downarrow}) is a stably compact space, and $(\pi^{\downarrow})^{\partial} = \pi^{\uparrow}$.

Fact

The categories of stably compact spaces and compact ordered spaces are isomorphic.

Soft shea 00000	ves Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000000000000000000000000
Ston	e and Priestley d	uality		

- Let A be a bounded distributive lattice.
- Let X be the set of prime filters of A.
- For any $a \in A$, define $\widehat{a} := \{x \in X \mid a \in x\}$.
- The Stone topology σ on X is generated by the sets of the form â, for a ∈ A.
- The Priestley topology π on X is generated by the sets of the form â ∩ (b̂)^c, for a, b ∈ A, and the Priestley order ≤ is reverse order inclusion.
- The sets of the form â are exactly the compact-opens of (X, σ) and the clopen down-sets of (X, π, ≤).

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000
Stone vs	. Priestley dua	ality		

- DL: category of bounded distributive lattices.
- Stone (1937): DL is dually equivalent to Stone spaces, i.e., sober T₀ spaces whose compact-open sets form a lattice basis for the topology.
- Priestley (1970): DL is dually equivalent to Priestley spaces, i.e., totally order-disconnected compact ordered spaces.

Fact

Spectral spaces form a full subcategory of stably compact spaces, which corresponds to the category of Priestley spaces under the isomorphism between stably compact spaces and compact ordered spaces.

Soft sheaves	Stably compact spaces 000000●	Sheaves and congruences	Sheaves and duality	Applications 000000000000000000000000000000000000

Soft sheaves

Definition

A sheaf F over a space Y is called soft if any local section over a compact saturated subset K of Y can be extended to a global section.

Here, a subset is saturated if it is an intersection of open sets.

Soft sheaves	Stably compact spaces	Sheaves and congruences ●00	Sheaves and duality	Applications 0000000000000
Sheaves	on stably com	pact spaces		

- Let F be a soft sheaf representation of an algebra A over a stably compact space Y[↑].
- For every compact saturated set K of Y[↑], we have the congruence θ_F(K), and FK is isomorphic to A/θ_F(K).

Proposition

The function $\theta_F : (\mathcal{K}Y^{\uparrow})^{\mathrm{op}} \to \operatorname{Con} A$ is a frame homomorphism for which any two congruences in the image commute.

Soft sheaves 00000	Stably compact spaces	Sheaves and congruences ○●○	Sheaves and duality	Applications 000000000000000000000000000000000000

From a frame homomorphism to a sheaf

- Let θ: (KY[↑])^{op} → Con A be a frame homomorphism for which any two congruences in the image commute.
- For any y ∈ Y, ↑y is compact-saturated, so we may define a stalk A_y by A/θ(↑y).
- With an appropriate topology, E_θ := ⋃_{y∈Y} A_y is an étale space over Y[↑].
- We denote by F_{θ} the associated sheaf of local sections.

Theorem (Characterization of soft sheaves)

The assignments $F \mapsto \theta_F$ and $\theta \mapsto F_{\theta}$ are mutually inverse, up to sheaf isomorphism.

Soft sheaves	Stably compact spaces	Sheaves and congruences ○○●	Sheaves and duality	Applications
Duality	yoga			

- The Theorem shows that soft sheaf representations of A over Y[↑] correspond to frame homomorphisms (KY[↑])^{op} → Con A for which any two congruences in the image commute.
- By definition, the open set frame, ΩY[↓], of Y[↓], consists of the complements of the sets in KY[↑].
- Thus, ΩY^{\downarrow} and $(\mathcal{K}Y^{\uparrow})^{op}$ are isomorphic.
- Soft sheaf representations therefore also correspond to frame homomorphisms ΩY[↓] → Con A for which any two congruences in the image commute.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality ●000000	Applications 000000000000000

The case of distributive lattices

- Let A be a distributive lattice with Priestley space (X, π, \leq) .
- Priestley duality implies that the lattice of congruences on A is isomorphic to the frame of open subsets of (X, π).
- Indeed, an isomorphism $\psi_A \colon \operatorname{Con} A \to \Omega X$ is defined by

$$\psi_{\mathcal{A}}(heta) := igcup_{(m{a},m{b})\in heta} (\widehat{m{a}}\cap (\widehat{m{b}})^{m{c}}).$$

- Thus, frame homomorphisms ΩY[↓] → Con A may be viewed as frame homomorphisms ΩY[↓] → ΩX.
- The latter correspond to continuous functions X → Y[↓], by pointfree duality.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality o●ooooo	Applications 000000000000000000000000000000000000

Pointfree duality

Proposition (Papert & Strauss)

Let X and Y be sober T_0 spaces. For every frame homomorphism $h: \Omega Y \to \Omega X$, there is a unique continuous function $f: X \to Y$ such that $h = f^{-1}$.

This gives a dual equivalence between the category of sober T_0 spaces and the category of spatial frames.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000
The dua	l of a sheaf			

- Let A be a distributive lattice with dual Priestley space X.
- Let F be a soft sheaf representation of A over Y^{\uparrow} .
- Then θ_F is a frame homomorphism ΩY[↓] → Con A such that any two congruences in the image commute.
- Then $\psi_A \theta_F \colon \Omega Y^{\downarrow} \to \Omega X$ is a frame homomorphism.
- Define q_F to be the continuous function $X \to Y^{\downarrow}$ dual to $\psi_A \theta_F$.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 00000000000

The dual of a sheaf

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality 0000●00	Applications 000000000000000
	<u> </u>			

Duality for commuting congruences

- To a soft sheaf representation F of A over Y^{\uparrow} , we have associated a continuous function $q_F \colon X \to Y^{\downarrow}$.
- How is the commutativity of congruences in the image of θ_F reflected in q_F?

Proposition

Let θ_1 , θ_2 be congruences on A and C_1 , C_2 the closed sets corresponding to them, i.e., $C_i := X \setminus \psi_A(\theta_i)$. The following are equivalent:

- The congruences θ_1 and θ_2 commute.
- For any $x_1 \in C_1$, $x_2 \in C_2$, if $\{i, j\} = \{1, 2\}$ and $x_i \le x_j$, then there exists $z \in C_1 \cap C_2$ such that $x_i \le z \le x_j$.

Soft sheaves

Stably compact spaces

Sheaves and congruences

Sheaves and duality 00000●0

Interpolating decompositions

Definition

Let X be a Priestley space and Y^{\downarrow} a stably compact space. A continuous function $q: X \to Y^{\downarrow}$ is called an interpolating decomposition of X over Y if, for any $x_1, x_2 \in X$, whenever $x_1 \leq x_2$, there exists $z \in X$ such that $x_1 \leq z \leq x_2$ and $q(z) \geq q(x_1), q(x_2)$.

Soft sheavesStably compact spacesS0000000000000

Sheaves and congruences

Sheaves and duality 000000●

Applications 000000000000

Sheaves and duality

Theorem (Duality for soft sheaf representations)

Let A be a distributive lattice with Priestley space X, and Y a compact ordered space. Soft sheaf representations of A over Y^{\uparrow} correspond one-to-one to

interpolating decompositions of X over Y^{\downarrow} .

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications •000000000000
Rooloan	products			

Our results generalize the following prototypes:

Theorem (Comer 1971, Burris & Werner 1980)

Boolean product representations of an algebra A are in a natural

one-to-one correspondence with relatively complemented

distributive lattices of permuting congruences on A.

Theorem (Gehrke 1991)

Boolean product representations of a distributive lattice $A \mapsto \prod_{y \in Y} A_y$ are in a natural one-to-one correspondence with Boolean sum decompositions of the Stone dual space X of A into the Stone dual spaces $(X_y)_{y \in Y}$ of the lattices $(A_y)_{y \in Y}$.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000000000000000000000000
MV-alge	hras			

- MV-algebras are the unit intervals in certain abelian groups with a distributive lattice order.
- The dual Priestley space of (the DL reduct of) an MV-algebra admits at least two distinct interpolating decompositions.
- Our result explains in a simple manner why MV-algebras admit these two soft sheaf representations and how they are related.

 Soft sheaves
 Stably compact spaces
 Sheaves and congruences
 Sheaves and duality
 Applications

 00000
 0000000
 000
 0000000
 0000000
 00000000

Principal congruences of an MV-algebra

A simple but important fact in the representation theory of $\ensuremath{\mathsf{MV}}\xspace$ algebras is that

$$heta: A \longrightarrow Con(A)$$

 $a \longmapsto heta(a) = <(0, a) >_{Con(A)}$

is a bounded lattice homomorphism.

The image of this map is the lattice $Con_{fin}(A)$ of finitely generated MV-algebra congruences of A. Thus, these congruences are pairwise permuting.

The MV-spectrum of A, is the dual space, Y, of $Con_{fin}(A)$

The MV-spectrum as a subspace of the dual space

Since $A \longrightarrow Con_{fin}(A)$ is a bounded distributive lattice quotient, by duality, $Y \hookrightarrow X$ may be seen as a closed subspace of X:

$$Y = \{y \in X \mid I_y \text{ is closed under } \oplus\}$$

We will mainly consider Y in its spectral topology and its dual spectral topology. These are equal to the subspace topologies for the spectral and dual spectral topologies on X, respectively.

The MV-spectrum directly from the MV-algebra

- The congruences of an MV-algebra are in 1-to-1 correspondence with MV-ideals: non-empty downsets closed under \oplus .
- The MV-spectrum may also be seen as the set of those MV-ideals that are prime in the sense that one of $a \ominus b(:= \neg(\neg a \oplus b))$ and $b \ominus a$ is a member for all $a, b \in A$. This is the same set $Y \subseteq X$.

The spectral topology on Y as determined on the previous slide is also the hull-kernel or spectral topology corresponding to the MV-ideals of A.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications

The maximal MV-spectrum

Given an MV-algebra, A, the subspace Z of Y of maximal MV-ideals of A is called the maximal MV-spectrum. It is compact Hausdorff, but not in general spectral.

Examples

- If A = the free n-generated MV-algebra, then Z is homeomorphic to the cube [0, 1]ⁿ with the Euclidean topology.
 - Free_n embeds in C([0, 1]ⁿ, [0, 1]) but the embedding is not unique.
- If A is a Boolean algebra, then Z is its Stone dual space.
- If A is any chain, then Z is the one-point space.
- If A has infinitesimals, then we do not have $A \hookrightarrow C(Z, [0, 1])$.

Soft sheaves

Well-known facts from the literature:

The following are equivalent:

• A bounded distributive lattice D is normal: $a \lor b = 1 \implies$

 $\exists c, d \in A \text{ with } c \land d = 0 \text{ and } a \lor d = 1 \text{ and } c \lor b = 1.$

- Each point in Pr(D) is below a unique maximal point.
- The inclusion of the maximal points of the dual space of *D* admits a continuous retraction

For any MV-algebra A, the lattice $Con_{fin}(A)$ is relatively normal (that is, each interval [a, b] is a normal lattice).

Thus Y is a root-system, that is, $\uparrow y$ is a chain for each $y \in Y$, Z is compact Hausdorff, and the map

 $m: Y \longrightarrow Z, \ y \mapsto \ \text{unique maximal point above } y$ is a continuous retraction

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 00000000000000
The mar	r k			

There is a continuous retraction $k : (X, \sigma^p) \longrightarrow (Y, \sigma^{\downarrow})$ (already present in the work of Martínez)

This map may be given a simple description:

$$k(x) = \max\{z \in X \mid I_x \oplus I_z \subseteq I_x\}$$

yielding

(Interpolation Lemma) If $x \leq x'$ then there is x'' with

$$x \le x'' \le x'$$
 and $k(x'') \ge k(x)$ and $k(x'') \ge k(x')$

From X to Z without using the MV structure

Combining the two earlier retractions we get

$$m \circ k : (X, \sigma^p) \longrightarrow (Z, \sigma^{\downarrow})$$

The kernel of this map is given by the relation x_1Wx_2 iff there are $x_1', x_2', x_0 \in X$ with

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications 000000000000000
Kanlans	w's theorem			

Kaplansky's theorem

[Kaplansky 1947]

Let Z_1 , Z_2 be compact Hausdorff spaces such that the lattices $C(Z_1, [0, 1])$ and $C(Z_2, [0, 1])$ are isomorphic. Then Z_1 and Z_2 are homeomorphic spaces.

Kaplansky theorem for arbitrary MV-algebras

Theorem

If A_1 and A_2 are MV-algebras having isomorphic lattice reducts, then the max MV-spectra of A_1 and A_2 are homeomorphic.

 Note that the max MV-spectrum of an MV-algebra of the form C(Z, [0, 1]) is Z so that our result generalizes Kaplansky's result.

Proof (sketch).

The maximal MV-spectrum can be reconstructed from the lattice spectrum using the relation W.

Soft sheaves	Stably compact spaces	Sheaves and congruences	Sheaves and duality	Applications
				00000000000

Sheaves and Duality

Mai Gehrke[°] Sam van Gool*

°CNRS and Université Côte d'Azur *University of Amsterdam

> 28 May 2018 SGSLPS 2018 Bern