Causal reasoning and inference with causal Bayes nets

Alexander Gebharter

Duesseldorf Center for Logic and Philosophy of Science
Heinrich Heine University Duesseldorf

28.04.2016

DCLPS

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable.

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable.

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable.

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable.

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable.

Introduction

- The theory of causal Bayes nets (CBNs) can be seen as a non-reductionist probabilistic theory of causation.
- In classical (reductionist) theories of causation, causation is explicitly defined.
- Causation is not defined within the theory of CBNs.
- Causation is only implicitly characterized (by several axioms).
- Causal structures are assumed to produce probabilistic footprints by whose means they can (in principle) be identified.
- The theory provides the best explanation for certain empirical phenomena and the whole theory is empirically testable. DCLPS

Duesseldorf Center for
Logic and Philosophy of Science

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

JFG

DCLPS

Duesseldorf Center for
Logic and Philosophy of Science

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

DCLPS

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Outline

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

DCLPS

Causal Bayes nets

Definition (probabilistic dependence/independence)
$\operatorname{Dep}(X, Y \mid Z)$ iff $P(y \mid x, z) \neq P(y \mid z)$ for some $X-, Y-$, and Z-values x, y, and z, respectively, and $P(x, z)>0$.

Indep $(X, Y \mid Z)$ iff $P(y \mid x, z)=P(y \mid z)$ for all $X-, Y$-, and Z-values x, y,
and z, respectively, or $P(x, z)=0$.
$(I n) \operatorname{Dep}(X, Y)$ iff $(I n) \operatorname{Dep}(X, Y \mid \emptyset)$

Causal Bayes nets

Definition (probabilistic dependence/independence)

$\operatorname{Dep}(X, Y \mid Z)$ iff $P(y \mid x, z) \neq P(y \mid z)$ for some $X-, Y$-, and Z-values x, y, and z, respectively, and $P(x, z)>0$.

Indep $(X, Y \mid Z)$ iff $P(y \mid x, z)=P(y \mid z)$ for all $X-, Y$-, and Z-values x, y, and z, respectively, or $P(x, z)=0$.

Causal Bayes nets

Definition (probabilistic dependence/independence)

$\operatorname{Dep}(X, Y \mid Z)$ iff $P(y \mid x, z) \neq P(y \mid z)$ for some $X-, Y$-, and Z-values x, y, and z, respectively, and $P(x, z)>0$.

Indep $(X, Y \mid Z)$ iff $P(y \mid x, z)=P(y \mid z)$ for all $X-, Y$-, and Z-values x, y, and z, respectively, or $P(x, z)=0$.
$(I n) \operatorname{Dep}(X, Y)$ iff $(I n) \operatorname{Dep}(X, Y \mid \emptyset)$

Causal Bayes nets

- CBNs are tripples $\langle V, E, P\rangle$.
- $G=\langle V, E\rangle$ is a directed acyclic graph (DAG).

Causal Bayes nets

- CBNs are tripples $\langle V, E, P\rangle$.
- $G=\langle V, E\rangle$ is a directed acyclic graph (DAG).

Causal Bayes nets

- CBNs are tripples $\langle V, E, P\rangle$.
- $G=\langle V, E\rangle$ is a directed acyclic graph (DAG).

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

JFG

DCLPS

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

DCLPS

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

Causal Bayes nets

- π is a causal path between X and Y
- X is a direct cause/causal parent of Y
- X is a (direct or indirect) cause of Y
- X is an intermediate cause on π
- Z is a common cause of X and Y
- Z is a common effect (collider) of X and Y

Causal Bayes nets

Definition (d-connection/d-separation)
X and Y are d-connected by $Z \subseteq V \backslash\{X, Y\}$ if and only if X and Y are connected by a causal path π such that
(i) no non-collider on π is in Z, and
(ii) every collider on π is in Z or has an effect in Z.
X and Y are d-separated by Z iff they are not d-connected by Z.

Causal Bayes nets

Definition (d-connection/ d-separation)
X and Y are d-connected by $Z \subseteq V \backslash\{X, Y\}$ if and only if X and Y are connected by a causal path π such that
(i) no non-collider on π is in Z, and
(ii) every collider on π is in Z or has an effect in Z.
X and Y are d-separated by Z iff they are not d-connected by Z.

Causal Bayes nets

Definition (d-connection/ d-separation)
X and Y are d-connected by $Z \subseteq V \backslash\{X, Y\}$ if and only if X and Y are connected by a causal path π such that
(i) no non-collider on π is in Z, and
(ii) every collider on π is in Z or has an effect in Z.
\square

Causal Bayes nets

Definition (d-connection $/ d$-separation)

X and Y are d-connected by $Z \subseteq V \backslash\{X, Y\}$ if and only if X and Y are connected by a causal path π such that
(i) no non-collider on π is in Z, and
(ii) every collider on π is in Z or has an effect in Z.
X and Y are d-separated by Z iff they are not d-connected by Z.

Causal Bayes nets

Definition (d-connection condition)

A causal model satisfies the d-connection condition if and only if for all $X, Y \in V$ and $Z \subseteq V \backslash\{X, Y\}$: If $\operatorname{Dep}(X, Y \mid Z)$, then X and Y are d-connected by Z.

Causal Bayes nets

Definition (causal Markov condition)

A causal model satisfies the causal Markov condition (CMC) if and only if every X is probabilistically independent of its non-effects conditional on its direct causes. (cf. Spirtes et al., 2000, p. 29)

CMC determines the following Markov factorization:

Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

Definition (causal Markov condition)

A causal model satisfies the causal Markov condition (CMC) if and only if every X is probabilistically independent of its non-effects conditional on its direct causes. (cf. Spirtes et al., 2000, p. 29)

CMC determines the following Markov factorization:

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{par}\left(X_{i}\right)\right) \tag{1}
\end{equation*}
$$

Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

$$
P(a, b, c, d, e)=P(a) \cdot P(b \mid a) \cdot P(c \mid a) \cdot P(d \mid b, c) \cdot P(e \mid d)
$$

Causal Bayes nets

$$
P(a, b, c, d, e)=P(a) \cdot P(b \mid a) \cdot P(c \mid a) \cdot P(d \mid b, c) \cdot P(e \mid d)
$$

$\operatorname{Indep}(B, C \mid A)$	$\operatorname{Indep}(C, B \mid A)$
$\operatorname{Indep}(D, A \mid\{B, C\})$	$\operatorname{Indep}(E,\{A, B, C\} \mid D)$

Causal Bayes nets

The causal Markov condition is assumed to be satisfied by causal models that satisfy the causal sufficiency condition.

Definition (causal sufficiency condition)

A causal model satisfies the causal sufficiency condition if and only if every common cause C of every pair $X, Y \in V$ is in V or is fixed to a certain value c.

Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

A causal model that satisfies CMC satisfies the causal faithfulness condition (CFC) if and only if the independencies implied by CMC are all the independencies in the model (cf. Spirtes et al., 2000, p. 31).

Generalized:

Definition (causal faithfulness condition)
A causal model satisfies the causal faithfulness condition if and only if every d-connection implies a probabilistic dependence. (cf. Schurz \& Gebharter, 2015, sec. 3.2)

Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

A causal model that satisfies CMC satisfies the causal faithfulness condition (CFC) if and only if the independencies implied by CMC are all the independencies in the model (cf. Spirtes et al., 2000, p. 31).

Generalized:

Definition (causal faithfulness condition)

A causal model satisfies the causal faithfulness condition if and only if every d-connection implies a probabilistic dependence. (cf. Schurz \& Gebharter, 2015, sec. 3.2)

DFG

Causal Bayes nets

intransitivity

Causal Bayes nets

intransitivity

canceling causes

DFG

Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

DFG

DCLPS

Causal Bayes nets

DFG

DCLPS
Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

canceling paths

$A \longrightarrow B \longrightarrow C$

intransitivity

canceling causes

deterministic dependence

DFG

Causal Bayes nets

DCLPS

Causal Bayes nets

canceling paths

intransitivity

canceling causes

deterministic dependence

Causal Bayes nets

DFG

DCDPS
Duesseldorf Center for
Logic and Philosophy of Science

Causal Bayes nets

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Causal Bayes nets

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Intervention and observation

CBNs allow for distinguishing intervention from observation (cf. Pearl, 2009, sec. 1.3.1; Spirtes et al., 2000, sec. 3.7.2).

Intervention and observation

CBNs allow for distinguishing intervention from observation (cf. Pearl, 2009, sec. 1.3.1; Spirtes et al., 2000, sec. 3.7.2).

Intervention and observation

CBNs allow for distinguishing intervention from observation (cf. Pearl, 2009, sec. 1.3.1; Spirtes et al., 2000, sec. 3.7.2).

Intervention and observation

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Intervention and observation

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Causal reasoning with causal Bayes nets

Observation:

$$
P\left(s l_{1} \mid s p_{o n}\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

$\sum_{u} P\left(s s_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)$

$$
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right) \text { where } W=W \backslash\left\{S_{p}\right\}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
P\left(s l_{1} \mid s p_{o n}\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

$\sum_{u} P\left(s s_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)$

Causal reasoning with causal Bayes nets

Observation:

$$
P\left(s l_{1} \mid s p_{o n}\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

$\sum_{u} P\left(s s_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)$

$$
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right) \text {, where } W=V \backslash\{S p\}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
\begin{gathered}
P\left(s l_{1} \mid s p_{o n}\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{\text {on }}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s /_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S /, S p\}\right.
\end{gathered}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
\begin{aligned}
& P\left(s l_{1} \mid s p_{\text {on }}\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{\text {on }}\right)} \\
& P\left(s l, s p_{\text {on }}\right)=\sum_{u} P\left(s l_{1}, s p_{\text {on }}, u\right) \text {, where } U=V \backslash\{S I, S p\}
\end{aligned}
$$

$$
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
\begin{gathered}
P\left(s l_{1} \mid s p_{\text {on }}\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{\text {on }}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{\text {on }}, u\right), \text { where } U=V \backslash\{S /, S p\}\right.
\end{gathered}
$$

$\sum_{u} P\left(s s_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)$

Causal reasoning with causal Bayes nets

Observation:

$$
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)
$$

$$
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\}
$$

$$
\begin{aligned}
& P\left(s l_{1} \mid s p_{\text {on }}\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{\text {on }}\right)} \\
& P\left(s l, s p_{\text {on }}\right)=\sum_{u} P\left(s l_{1}, s p_{\text {on }}, u\right) \text {, where } U=V \backslash\{S I, S p\}
\end{aligned}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)
$$

$$
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\}
$$

$$
\begin{aligned}
& P\left(s l_{1} \mid s p_{\text {on }}\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{\text {on }}\right)} \\
& P\left(s l, s p_{\text {on }}\right)=\sum_{u} P\left(s l_{1}, s p_{\text {on }}, u\right) \text {, where } U=V \backslash\{S I, S p\}
\end{aligned}
$$

Causal reasoning with causal Bayes nets

Observation:

$$
\begin{aligned}
& P\left(s l_{1} \mid s p_{\text {on }}\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{\text {on }}\right)} \\
& P\left(s l, s p_{\text {on }}\right)=\sum_{u} P\left(s l_{1}, s p_{\text {on }}, u\right) \text {, where } U=V \backslash\{S I, S p\} \\
& \sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right) \\
& P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right) \text {, where } W=V \backslash\{S p\} \\
& \sum_{u} P\left(s p_{o n}, w\right)=\sum_{s e, r a, w e, s l} P(s e) \cdot P\left(s p_{o n} \mid s e\right) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s s_{1} \mid w e\right)
\end{aligned}
$$

Causal reasoning with causal Bayes nets

Observation generalized:

$$
P(y \mid x)=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)} \text {, where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{X\}
$$

Note: X and Y can also be sets of variables!

DFG

Causal reasoning with causal Bayes nets

Observation generalized:

$$
P(y \mid x)=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)} \text {, where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{X\}
$$

Note: X and Y can also be sets of variables!

DFG

Causal reasoning with causal Bayes nets

Observation generalized:

$$
P(y \mid x)=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)} \text {, where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{X\}
$$

Note: X and Y can also be sets of variables!

Causal reasoning with causal Bayes nets

Intervention:

$$
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
\begin{gathered}
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{\text {on }}\right)}{P\left(s p_{o n}\right)} \\
P\left(s l_{,} s p_{o n}\right)=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S /, S p\}
\end{gathered}
$$

$$
P\left(s p_{o n}\right)=\sum P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\}
$$

Causal reasoning with causal Bayes nets

Intervention:
$P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)}$
$P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)\right.$, where $U=V \backslash\{S I, s p\}$
$\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{\text {se,ra,we }} P(s e) \cdot P($ ra|se $) \cdot P\left(\right.$ we $\left.\mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right)$
$\sum_{u} P\left(s p_{o n}, w\right)=\sum_{w} P\left(s p_{o n}, w\right)$, where $\left.W=V \backslash \backslash S p\right\}$

Causal reasoning with causal Bayes nets

Intervention:

$$
\begin{gathered}
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S I, S p\}\right. \\
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right) \\
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right) \text {, where } W=V \backslash\{S p\} \\
\sum_{u} P\left(s p_{o n}, w\right)=\sum_{s e, r a, w e, s l} P(s e) \cdot P(\text { ra|se }) \cdot P\left(\text { we } \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right)
\end{gathered}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
\begin{gathered}
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S /, s p\}\right. \\
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right) \\
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\} \\
\sum P\left(s p_{o n}, w\right)=
\end{gathered}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
\begin{gathered}
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S /, s p\}\right. \\
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right) \\
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\} \\
\sum P\left(s p_{o n}, w\right)=
\end{gathered}
$$

Causal reasoning with causal Bayes nets

Intervention:

$$
\begin{gathered}
P\left(s l_{1} \mid d o\left(s p_{o n}\right)\right)=\frac{P\left(s l_{1}, s p_{o n}\right)}{P\left(s p_{o n}\right)} \\
P\left(s l_{\left., s p_{o n}\right)}=\sum_{u} P\left(s l_{1}, s p_{o n}, u\right), \text { where } U=V \backslash\{S I, S p\}\right. \\
\sum_{u} P\left(s l_{1}, s p_{o n}, u\right)=\sum_{s e, r a, w e} P(s e) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right) \\
P\left(s p_{o n}\right)=\sum_{w} P\left(s p_{o n}, w\right), \text { where } W=V \backslash\{S p\} \\
\sum_{u} P\left(s p_{o n}, w\right)=\sum_{s e, r a, w e, s l} P(s e) \cdot P(r a \mid s e) \cdot P\left(w e \mid s p_{o n}, r a\right) \cdot P\left(s l_{1} \mid w e\right)
\end{gathered}
$$

Causal reasoning with causal Bayes nets

Intervention generalized:

$$
P(y \mid d o(x))=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)}, \text { where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{Y\}
$$

Note: X and Y can also be sets of variables!

Causal reasoning with causal Bayes nets

Intervention generalized:

$$
P(y \mid d o(x))=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)} \text {, where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{Y\}
$$

Note: X and Y can also be sets of variables!

Causal reasoning with causal Bayes nets

Intervention generalized:

$$
P(y \mid d o(x))=\frac{\sum_{u} P(y, x, u)}{\sum_{w} P(x, w)} \text {, where } U=V \backslash\{X, Y\} \text { and } W=V \backslash\{Y\}
$$

Note: X and Y can also be sets of variables!

Intervention and observation

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Intervention and observation

- Introduction
- Causal Bayes nets
- Intervention and observation
- Causal reasoning with causal Bayes nets
- Causal discovery with causal Bayes nets

Causal discovery

- There is a multitude of search algorithms for all kinds of causal scenarios available in the literature (e.g., Spirtes et al., 2000).
- I will present one of these algorithms: the SGS algorithm.
- SGS presupposes acyclicity as well as the causal Markov condition and the faithfulness condition to hold.

Causal discovery

- There is a multitude of search algorithms for all kinds of causal scenarios available in the literature (e.g., Spirtes et al., 2000).
- I will present one of these algorithms: the SGS algorithm.
- SGS presupposes acyclicity as well as the causal Markov condition and the faithfulness condition to hold.

Causal discovery

- There is a multitude of search algorithms for all kinds of causal scenarios available in the literature (e.g., Spirtes et al., 2000).
- I will present one of these algorithms: the SGS algorithm.
- SGS presupposes acyclicity as well as the causal Markov condition and the faithfulness condition to hold.

Causal discovery

SGS algorithm (cf. Spirtes et al., 2000, p. 82)
S1: Form the complete undirected graph over vertex set V.

DFG

Duesseldorf Center for
Logic and Philosophy of Science

Causal discovery

SGS algorithm (cf. Spirtes et al., 2000, p. 82)
S1: Form the complete undirected graph over vertex set V.
S2: Check for every $X-Y$ for which there is a $Z \subseteq V \backslash\{X, Y\}$ such that Indep $(X, Y \mid Z)$, remove the edge between X and Y.

Causal discovery

SGS algorithm (cf. Spirtes et al., 2000, p. 82)

S1: Form the complete undirected graph over vertex set V.
S2: Check for every $X-Y$ for which there is a $Z \subseteq V \backslash\{X, Y\}$ such that Indep $(X, Y \mid Z)$, remove the edge between X and Y.

S3: For all $X-Z-Y$ (or $X \longrightarrow Z-Y$) without an edge between X and Y : Orient the edges as $X \longrightarrow Z \longleftarrow Y$ iff $\operatorname{Dep}(X, Y \mid M)$ holds for all $M \subseteq V \backslash\{X, Y\}$ with $Z \in M$.

Causal discovery

SGS algorithm (cf. Spirtes et al., 2000, p. 82)

S1: Form the complete undirected graph over vertex set V.
S2: Check for every $X-Y$ for which there is a $Z \subseteq V \backslash\{X, Y\}$ such that Indep $(X, Y \mid Z)$, remove the edge between X and Y.

S3: For all $X-Z-Y$ (or $X \longrightarrow Z-Y$) without an edge between X and Y : Orient the edges as $X \longrightarrow Z \longleftarrow Y$ iff $\operatorname{Dep}(X, Y \mid M)$ holds for all $M \subseteq V \backslash\{X, Y\}$ with $Z \in M$.

S4: (a) For all $X \longrightarrow Z-Y$ without an edge between X and Y : Orient $Z-Y$ as $Z \longrightarrow Y$.
(b) If $X \longrightarrow \ldots \longrightarrow Y$ and $X-Y$, then orient $X-Y$ as $X \longrightarrow Y$.

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \quad \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

A
C

D

B

$A \& B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \quad \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step 2 | Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step 1 Step 2 | Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
$B \& D: \quad \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

A \& $B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
$A \& D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Causal discovery

Step $1 \mid$ Step $2 \mid$ Step $3 \mid$ Step 4

$A \& B: \quad \operatorname{Indep}(A, B)$
A \& $D: \quad \operatorname{Indep}(A, D \mid C) \quad \operatorname{Indep}(A, D \mid\{B, C\})$
B \& $D: \quad \operatorname{Indep}(B, D \mid C) \quad \operatorname{Indep}(B, D \mid\{A, C\})$

Many thanks!

DFG

Duesseldorf Center for
Logic and Philosophy of Science

References

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., Leimer, H.-G. (1990). Independence properties of directed Markov fields. Networks, 20, 491-505.

Pearl, J. (2009). Causality (2nd ed.). Cambridge: Cambridge University Press.

Reichenbach, H. (1956). The direction of Time. Berkeley: University of California Press.

Schurz, G., \& Gebharter, A. (2015). Causality as a theoretical concept: Explanatory warrant and empirical content of the theory of causal nets. Synthese. Advance online publication. doi:10.1007/s11229-014-0630-z

Spirtes, P., Glymour, C., \& Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge, MA: MIT Press.

