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Introduction

The theory of causal Bayes nets (CBNs) can be seen as a
non-reductionist probabilistic theory of causation.

In classical (reductionist) theories of causation, causation is explicitly
defined.

Causation is not defined within the theory of CBNs.

Causation is only implicitly characterized (by several axioms).

Causal structures are assumed to produce probabilistic footprints by
whose means they can (in principle) be identified.

The theory provides the best explanation for certain empirical
phenomena and the whole theory is empirically testable.
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Causal Bayes nets

Definition (probabilistic dependence/independence)
Dep(X ,Y |Z ) iff P(y |x , z) 6= P(y |z) for some X -, Y -, and Z -values x , y ,
and z , respectively, and P(x , z) > 0.

Indep(X ,Y |Z ) iff P(y |x , z) = P(y |z) for all X -, Y -, and Z -values x , y ,
and z , respectively, or P(x , z) = 0.

(In)Dep(X ,Y ) iff (In)Dep(X ,Y |∅)
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Causal Bayes nets

CBNs are tripples 〈V ,E ,P〉.

G = 〈V ,E 〉 is a directed acyclic graph (DAG).
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Causal Bayes nets

π is a causal path between X and Y

X is a direct cause/causal parent of Y
X is a (direct or indirect) cause of Y
X is an intermediate cause on π
Z is a common cause of X and Y

Z is a common effect (collider) of X and Y
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Causal Bayes nets

Definition (d-connection/d-separation)
X and Y are d-connected by Z ⊆ V \{X ,Y } if and only if X and Y are
connected by a causal path π such that
(i) no non-collider on π is in Z , and
(ii) every collider on π is in Z or has an effect in Z .

X and Y are d-separated by Z iff they are not d-connected by Z .
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Causal Bayes nets

Definition (d-connection condition)
A causal model satisfies the d-connection condition if and only if for all
X ,Y ∈ V and Z ⊆ V \{X ,Y }: If Dep(X ,Y |Z ), then X and Y are
d-connected by Z .
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Causal Bayes nets

Definition (causal Markov condition)
A causal model satisfies the causal Markov condition (CMC) if and only if
every X is probabilistically independent of its non-effects conditional on its
direct causes. (cf. Spirtes et al., 2000, p. 29)

CMC determines the following Markov factorization:

P(x1, ..., xn) =
n∏

i=1

P(xi |par(Xi )) (1)
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Causal Bayes nets

P(a, b, c , d , e) = P(a) · P(b|a) · P(c |a) · P(d |b, c) · P(e|d)

Indep(B,C |A) Indep(C ,B|A)
Indep(D,A|{B,C}) Indep(E , {A,B,C}|D)
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Causal Bayes nets

The causal Markov condition is assumed to be satisfied by causal models
that satisfy the causal sufficiency condition.

Definition (causal sufficiency condition)
A causal model satisfies the causal sufficiency condition if and only if every
common cause C of every pair X ,Y ∈ V is in V or is fixed to a certain
value c .
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Causal Bayes nets

A causal model that satisfies CMC satisfies the causal faithfulness
condition (CFC) if and only if the independencies implied by CMC are all
the independencies in the model (cf. Spirtes et al., 2000, p. 31).

Generalized:

Definition (causal faithfulness condition)
A causal model satisfies the causal faithfulness condition if and only if
every d-connection implies a probabilistic dependence. (cf. Schurz &
Gebharter, 2015, sec. 3.2)
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Intervention and observation

CBNs allow for distinguishing intervention from observation (cf. Pearl,
2009, sec. 1.3.1; Spirtes et al., 2000, sec. 3.7.2).

Wet SlipperySeason

Sprinkler

Rain
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Causal reasoning with causal Bayes nets

Wet SlipperySeason

Sprinkler

Rain
Observation:

P(sl1|spon) =
P(sl1, spon)

P(spon)

P(sl,spon) =
∑
u

P(sl1, spon, u),where U = V \{Sl ,Sp}

∑
u

P(sl1, spon, u) =
∑

se,ra,we

P(se) ·P(spon|se) ·P(ra|se) ·P(we|spon, ra) ·P(sl1|we)

P(spon) =
∑
w

P(spon,w),where W = V \{Sp}

∑
u

P(spon,w) =
∑

se,ra,we,sl

P(se) · P(spon|se) · P(ra|se) · P(we|spon, ra) · P(sl1|we)
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Causal reasoning with causal Bayes nets

Wet SlipperySeason

Sprinkler

Rain

Observation generalized:

P(y |x) =
∑

u P(y , x , u)∑
w P(x ,w)

,where U = V \{X ,Y } and W = V \{X}

Note: X and Y can also be sets of variables!
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Causal discovery

There is a multitude of search algorithms for all kinds of causal
scenarios available in the literature (e.g., Spirtes et al., 2000).

I will present one of these algorithms: the SGS algorithm.

SGS presupposes acyclicity as well as the causal Markov condition and
the faithfulness condition to hold.
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Causal discovery

SGS algorithm (cf. Spirtes et al., 2000, p. 82)

S1: Form the complete undirected graph over vertex set V .

S2: Check for every X — Y for which there is a Z ⊆ V \{X ,Y } such that
Indep(X ,Y |Z ), remove the edge between X and Y .

S3: For all X — Z — Y (or X −→ Z — Y ) without an edge between X
and Y : Orient the edges as X −→ Z ←− Y iff Dep(X ,Y |M) holds
for all M ⊆ V \{X ,Y } with Z ∈ M.

S4: (a) For all X −→ Z — Y without an edge between X and Y : Orient
Z — Y as Z −→ Y .
(b) If X −→ ... −→ Y and X — Y , then orient X — Y as X −→ Y .
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Causal discovery

Step 1 Step 2 Step 3 Step 4

A & B : Indep(A,B)
A & D: Indep(A,D|C ) Indep(A,D|{B,C})
B & D: Indep(B,D|C ) Indep(B,D|{A,C})
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Many thanks!
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