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My plan

1 formally present two prominent fuzzy logics:
I Gödel–Dummett logic
I Łukasiewicz logic

and to do so in two different ways:
I using (almost classical) Hilbert style axiomatization
I using (highly non-classical, yet surprisingly ‘natural’) semantics

2 give a (hint of a) proof of the completeness theorem (the equality
of these two ways)

I for the Gödel–Dummett logic and
I show why the same proof would not work for Łukasiewicz logic and

how to overcome this problem

3 show that the same proof would work in a much more general
setting for an arbitrary logic satisfying certain minimal conditions
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The basic syntax: no change there

We consider primitive connectives L = {0,∧,∨,→} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulae are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulae.
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Recall the semantics of classical logic

Definition 2.1
A 2-evaluation is a mapping e from FmL to {0, 1}; s.t.:

e(0) = 02
= 0

e(ϕ ∧ ψ) = e(ϕ) ∧2 e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨2 e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→2 e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
0 otherwise.

Definition 2.2
A formula ϕ is a logical consequence of a theory T
(in classical logic), T |=2 ϕ, if for every 2-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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Recall the semantics of classical logic

Definition 2.1
A 2-evaluation is a mapping e from FmL to {0, 1}; s.t.:

e(0) = 02
= 0

e(ϕ ∧ ψ) = e(ϕ) ∧2 e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨2 e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→2 e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
e(ψ) otherwise.

Definition 2.2
A formula ϕ is a logical consequence of a theory T
(in classical logic), T |=2 ϕ, if for every 2-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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Changing the semantics

Definition 2.3
A [0, 1]G-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]G = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]G e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]G e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]G e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
e(ψ) otherwise.

Definition 2.4
A formula ϕ is a logical consequence of a theory T
(in Gödel–Dummett logic), T |=[0,1]G ϕ, if for every [0, 1]G-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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Changing the semantics

Some classical properties fail in |=[0,1]G :

6|=[0,1]G ¬¬ϕ→ ϕ ¬¬1
2 →

1
2 = 1→ 1

2 = 1
2

6|=[0,1]G ϕ ∨ ¬ϕ
1
2 ∨ ¬

1
2 = 1

2

6|=[0,1]G ¬(¬ϕ ∧ ¬ψ)→ ϕ ∨ ψ ¬(¬ 1
2 ∧ ¬

1
2)→ 1

2 ∨
1
2 = 1→ 1

2 = 1
2

6|=[0,1]G ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

(( 1
2 → 0)→ 0)→ ((0→ 1

2)→ 1
2) = 1→ 1

2 = 1
2
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Recall a proof system for classical logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)
(A9) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.

We write T `CL ϕ if there is a proof of ϕ from T in classical logic.
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A proof system for Gödel–Dummett logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.

We write T `G ϕ if there is a proof of ϕ from T in Gödel–Dummett logic.
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Completeness theorem for classical logic

Theorem 2.5
For every theory T and a formula ϕ we have:

T `CL ϕ if, and only if, T |=2 ϕ.
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Completeness theorem for Gödel–Dummett logic

Theorem 2.6
For every theory T and a formula ϕ we have:

T `G ϕ if, and only if, T |=[0,1]G ϕ.
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Recall a proof system for classical logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)
(A9) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.
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A proof system for Gödel–Dummett logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.
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Relation to intuitionistic logic

The intuitionistic logic has axioms:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))

(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))

(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.
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Algebraic semantics

A Heyting-algebra is a structure B = 〈B,∧B,∨B,→B, 0B
, 1B〉 such that:

(1) 〈B,∧B,∨B, 0B
, 1B〉 is a bounded lattice,

(2) z ≤ x→B y iff x ∧B z ≤ y, (residuation)

where x ≤ y is defined as x ∧ y = x or (equivalently) as x→ y = 1.

We say that B is

Gödel algebra (or just G-algebra) whenever

(x→ y) ∨ (y→ x) = 1 (prelinearity)

linearly ordered (or Heyting chain) if ≤ is a total order.

Note that each Heyting chain is G-algebra, so we also call it G-chain.

By G (or Glin resp.) we denote the class of all G-algebras (G-chains resp.)
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Standard semantics

Consider algebra [0, 1]G = 〈[0, 1],∧[0,1]G ,∨[0,1]G ,→[0,1]G , 0, 1〉, where:

a ∧[0,1]G b = min{a, b}

a ∨[0,1]G b = max{a, b}

a→[0,1]G b =

{
1 if a ≤ b,
b otherwise.

Exercise 1 (Easy)
Prove that [0, 1]G is the unique G-chain with the lattice reduct
〈[0, 1],min,max, 0, 1〉.
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Recall the notion of [0, 1]G-evaluation

Definition 2.7
A [0, 1]G-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]G = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]G e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]G e(ψ) = max{e(ϕ), e(ψ)}
e(ϕ→ ψ) = e(ϕ)→[0,1]G e(ψ) = · · ·

Definition 2.8
A formula ϕ is a logical consequence of set of a theory T
in Gödel–Dummett logic, T |=[0,1]G ϕ,
if for every [0, 1]G-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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General notion of semantical consequence

Definition 2.9
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ ∧ ψ) = e(ϕ) ∧B e(ψ)

e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ)

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

Definition 2.10
A formula ϕ is a logical consequence of a theory T
w.r.t. a class K of G-algebras, T |=K ϕ,
if for every B ∈ K and every B-evaluation e:

if e(γ) = 1B for every γ ∈ T, then e(ϕ) = 1B.
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Three completeness theorems

Theorem 2.11
The following are equivalent for every theory T and a formula ϕ:

1 T `G ϕ

2 T |=G ϕ w.r.t. general semantics
3 T |=Glin ϕ w.r.t. linear semantics
4 T |=[0,1]G ϕ w.r.t. standard semantics

Exercise 2 (Medium)
Prove the implications from top to bottom.
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Some theorems and derivations in G

Proposition 2.12
(T1) `G ϕ→ ϕ
(T2) `G ϕ→ (ψ → ϕ ∧ ψ)

(D1) ϕ↔ 1 `G ϕ and ϕ `G ϕ↔ 1
(D2) ϕ→ ψ `G ϕ ∧ ψ ↔ ϕ and ϕ ∧ ψ ↔ ϕ `G ϕ→ ψ
(D3) ϕ→ (ψ → χ) `G ϕ ∧ ψ → χ and ϕ ∧ ψ → χ `G ϕ→ (ψ → χ)

Proposition 2.13

`G ϕ ∧ ψ ↔ ψ ∧ ϕ `G ϕ ∨ ψ ↔ ψ ∨ ϕ
`G ϕ ∧ (ψ ∧ χ)↔ (ϕ ∧ ψ) ∧ χ `G ϕ ∨ (ψ ∨ χ)↔ (ϕ ∨ ψ) ∨ χ
`G ϕ ∧ (ϕ ∨ ψ)↔ ϕ `G ϕ ∨ (ϕ ∧ ψ)↔ ϕ

`G 1 ∧ ϕ↔ ϕ `G 0 ∨ ϕ↔ ϕ

`G (ϕ→ ψ) ∨ (ψ → ϕ)↔ 1
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The rule of substitution

Proposition 2.14

`G ϕ↔ ϕ ϕ↔ ψ `G ψ ↔ ϕ ϕ↔ ψ,ψ ↔ χ `G ϕ↔ χ

ϕ↔ ψ `G (ϕ ∧ χ)↔ (ψ ∧ χ) ϕ↔ ψ `G (ϕ ∨ χ)↔ (ψ ∨ χ)
ϕ↔ ψ `G (χ ∧ ϕ)↔ (χ ∧ ϕ) ϕ↔ ψ `G (χ ∨ ϕ)↔ (χ ∨ ψ)
ϕ↔ ψ `G (ϕ→ χ)↔ (ψ → χ) ϕ↔ ψ `G (χ→ ϕ)↔ (χ→ ψ)

Corollary 2.15
ϕ↔ ψ `G χ↔ χ′, where χ′ results from χ by replacing

its subformula ϕ by ψ.

Exercise 3 (Difficult and tedious; but can be automatized)
Prove this corollary and the three previous propositions.
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Lindenbaum–Tarski algebra

Definition 2.16
Let T be a theory. We define

[ϕ]T = {ψ | T `G ϕ↔ ψ} LT = {[ϕ]T | ϕ ∈ FmL}

The Lindenbaum–Tarski algebra of a theory T (LindTT ) as an algebra
with the domain LT and operations:

0LindTT = [0]T

[ϕ]T →LindTT [ψ]T = [ϕ→ ψ]T

[ϕ]T ∨LindTT [ψ]T = [ϕ ∨ ψ]T

[ϕ]T ∧LindTT [ψ]T = [ϕ ∧ ψ]T

Exercise 4 (Easy)
Prove that the definition of LindTT is sound.
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Lindenbaum–Tarski algebra: basic properties

Proposition 2.17

1 [ϕ]T = 1LindTT iff T `G ϕ.
2 [ϕ]T ≤ [ψ]T iff T `G ϕ→ ψ.
3 LindTT is a G-algebra.

Proof.
1. [ϕ]T = [1]T iff T `G ϕ↔ 1 iff (by (D1)) T `G ϕ.
2. [ϕ]T ≤ [ψ]T iff [ϕ]T ∧ [ψ]T = [ϕ]T iff [ϕ ∧ ψ]T = [ϕ]T iff T `G ϕ ∧ ψ ↔ ϕ
iff (by (D2)) T `G ϕ→ ψ.
3. The validity of identities follows from Proposition 2.13 and the
residuation from (D3): [ϕ]T ≤ [ψ]T → [χ]T iff T ` ϕ→ (ψ → χ) iff
T `G ϕ ∧ ψ → χ iff [ϕ]T ∧ [ψ]T ≤ [χ]T .
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Lindenbaum–Tarski algebras

Proposition 2.18
For each theory T there is a G-algebra LindTT (called the Linden-
baum–Tarski algebra of the theory T) and an LindTT -evaluation eT st

1 eT(χ) = 1LindTT iff T ` χ.

2 LindTT is a G-chain iff T `G ψ → χ or T `G χ→ ψ for each ψ, χ.

A theory T is linear if T `G ϕ→ ψ or T `G ψ → ϕ for each ϕ,ψ.

Exercise 5 (Easy)
Prove it.
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The proof of the first (general) completeness

Theorem 2.19
For every theory T and a formula ϕ we have:

T `G ϕ if, and only if, T |=G ϕ.

Proof.
Assume that T 6`G ϕ

Take the G-algebra LindTT

Take the LindTT -evaluation eT , recall that eT(χ) = 1LindTT iff T ` χ

Clearly eT(ϕ) 6= 1LindTT and

eT(χ) = 1LindTT for each χ ∈ T (because T `G χ)
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The proof of the second (linear) completeness

Theorem 2.20
For every theory T and a formula ϕ we have:

T `G ϕ if, and only if, T |=Glin ϕ.

Proof.
Assume that T 6`G ϕ and that there is linear S ⊇ T st. S 6`G ϕ

Take the G-algebra LindTS, we know that it is a G-chain

Take the LindTS-evaluation eS, recall that eS(χ) = 1LindTT′ iff S ` χ

Clearly eS(ϕ) 6= 1LindTS and

eS(χ) = 1LindTS for each χ ∈ T (because S `G χ)
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Linear Extension Property

A theory T is linear if T `G ϕ→ ψ or T `G ψ → ϕ for each ϕ,ψ.

Lemma 2.21 (Linear Extension Property)
If T 0G ϕ, then there is linear theory S ⊇ T s.t. S 0G ϕ.

Proof.
Assume that T 0L ϕ

Take a maximal S ⊇ T s.t. S 0L ϕ (it exists due to the Zorn’s lemma)

Assume that S is not linear, i.e., there are formulae ψ, χ
s.t. S 0L ψ → χ and S 0L χ→ ψ

Then, due to the maximality of S: S, ψ → χ `L ϕ and S, χ→ ψ `L ϕ

If we would know that this implies: S `L ϕ, we have a
contradiction!
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Semilinearity Property

Lemma 2.22 (Semilinearity Property)
If T, ψ → χ `G ϕ and T, χ→ ψ `G ϕ, then T `G ϕ.

Proof.
If we would know that G has the deduction theorem:

T `G (ψ → χ)→ ϕ and T `G (χ→ ψ)→ ϕ

Thus by axiom (A6c) T `G (ψ → χ) ∨ (χ→ ψ)→ ϕ

Then axiom (A4) completes the proof.
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Deduction Theorem

Theorem 2.23 (Deduction theorem)
For every set of formulae T ∪ {ϕ,ψ},

T, ϕ `G ψ iff T `G ϕ→ ψ

Exercise 6 (Medium)
Prove it.
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The proof of the third (standard) completeness

Contrapositively: assume that T 6`G ϕ. Let B be a countable G-chain1

and e a B-evaluation such that e[T] ⊆ {1B} and e(ϕ) 6= 1B.

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f : B→ [0, 1] such that
f (0) = 0, f (1) = 1, and for each a, b ∈ B we have:

a ≤ b iff f (a) ≤ f (a)

We define a mapping ē : FmL → [0, 1] as

ē(ψ) = f (e(ψ))

and prove (by induction) that it is [0, 1]G-evaluation.

Then ē(ψ) = 1 iff e(ψ) = 1B and so ē[T] ⊆ {1} and ē(ϕ) 6= 1.

1E.g. B = LindTT′ for some linear T ′ ⊇ T st. T ′ 0G ϕ.
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We still keep the classical syntax

We consider primitive connectives L = {0,∧,∨,→} and defined
connectives ¬, 1, and↔:

¬ϕ = ϕ→ 0 1 = ¬0 ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Formulae are built from a fixed countable set of atoms using the
connectives.

Let us by FmL denote the set of all formulae.

But we also use additional connectives ⊕ and & defined as:

ϕ⊕ ψ = ¬ϕ→ ψ ϕ& ψ = ¬(ϕ→ ¬ψ)
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Recall the semantics of Gödel–Dummett logic

Definition 2.24
A [0, 1]G-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]G = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]G e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]G e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]G e(ψ) =

{
1 if e(ϕ) ≤ e(ψ),
e(ψ) otherwise.

Definition 2.25
A formula ϕ is a logical consequence of a theory T
(in Gödel–Dummett logic), T |=[0,1]G ϕ, if for every [0, 1]G-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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Changing the semantics (again)

Definition 2.26
A [0, 1]�-evaluation is a mapping e from FmL to [0, 1]; s.t.:

e(0) = 0[0,1]� = 0

e(ϕ ∧ ψ) = e(ϕ) ∧[0,1]� e(ψ) = min{e(ϕ), e(ψ)}
e(ϕ ∨ ψ) = e(ϕ) ∨[0,1]� e(ψ) = max{e(ϕ), e(ψ)}

e(ϕ→ ψ) = e(ϕ)→[0,1]� e(ψ) =

{
1 if e(ϕ) ≤ e(ψ)
1−e(ϕ)+e(ψ) otherwise

Definition 2.27
A formula ϕ is a logical consequence of a theory T
(in Łukasiewicz logic), T |=[0,1]� ϕ, if for every [0, 1]�-evaluation e:

if e(γ) = 1 for every γ ∈ T, then e(ϕ) = 1.
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Changing the semantics (again)

Some classical properties fail in |= [0, 1]�:

6|=[0,1]� ϕ ∨ ¬ϕ
1
2 ∨ ¬

1
2 = 1

2

6|=[0,1]� (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

(1
2 → (1

2 → 0))→ (1
2 → 0) = 1→ 1

2 = 1
2

BUT other classical properties hold, e.g.:

|=[0,1]� ¬¬ϕ→ ϕ

|=[0,1]� ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

all De Morgan laws involving ¬,∨,∧
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Recall a proof system for classical logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)
(A9) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.

We write T `CL ϕ if there is a proof of ϕ from T in classical logic.
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Recall a proof system for Gödel–Dummett logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(A7) 0→ ϕ
(A8) (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.

We write T `G ϕ if there is a proof of ϕ from T in Gödel–Dummett logic.
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A proof system for Łukasiewicz logic

The axioms are:
(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ→ (ψ → ϕ)
(A3) (ϕ→ (ψ → χ))→ (ψ → (ϕ→ χ))
(A4) (ϕ→ ψ) ∨ (ψ → ϕ)
(A5a) ϕ ∧ ψ → ϕ
(A5b) ϕ ∧ ψ → ψ
(A5c) (χ→ ϕ)→ ((χ→ ψ)→ (χ→ ϕ ∧ ψ))
(A6a) ϕ→ ϕ ∨ ψ
(A6b) ψ → ϕ ∨ ψ
(A6c) (ϕ→ χ)→ ((ψ → χ)→ (ϕ ∨ ψ → χ))
(A7) 0→ ϕ

(A9) ((ϕ→ ψ)→ ψ)→ ((ψ → ϕ)→ ϕ)

The only inference rule is modus ponens: from ϕ→ ψ and ϕ infer ψ.

We write T `� ϕ if there is a proof of ϕ from T in Łukasiewicz logic.
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Completeness theorem for Łukasiewicz logic

Theorem 2.28
For every finite theory T and a formula ϕ we have:

T `� ϕ if, and only if, T |=[0,1]� ϕ.

Exercise 7 (Easy)
Prove the implication from left to right.
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Finitarity vs. compactness of |=[0,1]� and `�
Proposition 2.29

1 |=[0,1]� is compact i.e., if each finite T ′ ⊆ T there is
an [0, 1]�- evaluation e st. e[T ′] ⊆ {1}, then there is
an [0, 1]�-evaluation e st. e[T] ⊆ {1}

2 |=[0,1]� is not finitary i.e., there is T ∪ {ϕ} s.t. T |=[0,1]� ϕ but for no
finite T ′ ⊆ T we have T ′ |=[0,1]� ϕ

3 `� is finitary

a⊕ b = min{a + b, 1} ϕ⊕ ψ := ¬ϕ→ ψ

Σ = {(p⊕ n. . .⊕ p)→ q | n ≥ 1} ∪ {¬p→ q}

Σ |=[0,1]� q

For every finite Σ0 ⊆ Σ, Σ0 6|=[0,1]� q.

Thus we cannot have the strong completeness theorem `� = |=[0,1]�
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A problem for the completeness proof

The ‘normal’ deduction theorem fails in �:

Proof.
Clearly ϕ,ϕ→ (ϕ→ ψ) `� ψ (by using modus ponens twice)

But then by DT twice also `� (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ)

And so by soundness also: |=[0,1]� (ϕ→ (ϕ→ ψ))→ (ϕ→ ψ) . . .

. . . which we know is not true.

We can only prove a local deduction theorem:

Theorem 2.30
For every theory T and formulae ϕ and ψ we have:

T, ϕ `� ψ iff there is n ≥ 1 such that T `� ϕ& n. . .& ϕ→ ψ
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How do we get the Semilinearity Property?

Assume that we would be able to prove:

Theorem 2.31 (Proof by Cases Property)
If T, ψ `� ϕ and T, χ `� ϕ, then T, ψ ∨ χ `� ϕ.

Then the Semilinearity Property easily follows using axiom (A4)
(ψ → χ) ∨ (χ→ ψ) .

Lemma 2.32 (Semilinearity Property)
If T, ψ → χ `� ϕ and T, χ→ ψ `� ϕ, then T `� ϕ.
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A proof of the Proof by Cases Property

Exercise 8 (Medium)

Prove that
(P1) `� ϕ ∨ ϕ→ ϕ
(P2) `� ϕ ∨ ψ → ψ ∨ ϕ
(P3) ϕ ∨ χ, (ϕ→ ψ) ∨ χ `� ψ ∨ χ

Assume: T, ψ `� ϕ and T, χ `� ϕ

Assume that we know that: if T `� ϕ, then {ψ ∨ χ | ψ ∈ T} `� ϕ ∨ χ

Then: T ∨ χ, ψ ∨ χ `� ϕ ∨ χ and T ∨ ϕ, χ ∨ ϕ `� ϕ ∨ ϕ.

Using (A6a), (P1), and (P2) we get T, ψ ∨ χ `� χ ∨ ϕ and T, χ ∨ ϕ `� ϕ

Thus obviously: T, ψ ∨ χ `� ϕ

Petr Cintula (ICS CAS) Mathematical Aspects of Many-Valued Logics 45 / 68



A proof of the Proof by Cases Property

Exercise 8 (Medium)

Prove that
(P1) `� ϕ ∨ ϕ→ ϕ
(P2) `� ϕ ∨ ψ → ψ ∨ ϕ
(P3) ϕ ∨ χ, (ϕ→ ψ) ∨ χ `� ψ ∨ χ

So we need to show that: if T `� ϕ, then {ψ ∨ χ | ψ ∈ T} `� ϕ ∨ χ

We prove more: If T `� ϕ, then T ∨ χ `� δ ∨ χ
for each δ appearing in the proof of ϕ from T.

It is trivial for δ ∈ T or δ an axiom

if we used MP, by IH there has to be η st.

T∨χ `� η∨χ T∨χ `� (η → δ)∨χ thus (P3) completes the proof.
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Algebraic semantics
An MV-algebra is a structure B = 〈B,⊕,¬, 0〉 such that:

(1) 〈B,⊕, 0〉 is a commutative monoid,
(2) ¬¬x = x,
(3) x⊕ ¬0 = ¬0,
(4) ¬(¬x⊕ y)⊕ y = ¬(¬y⊕ x)⊕ x.

In each MV-algebra we define additional operations:

x→ y is ¬x⊕ y implication
x & y is ¬(¬x⊕ ¬y) strong conjunction
x ∧ y is x & (x→ y) min-conjunction
x ∨ y is ¬(¬x ∧ ¬y) max-disjunction

1 is ¬0 top

Exercise 9 (Easy)

Prove that 〈B,∧,∨, 0, 1〉 is a bounded lattice.
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Algebraic semantics cont. and standard semantics
We say that an MV-algebra B is linearly ordered (or MV-chain) if its
lattice reduct is.

By MV (or MVlin resp.) we denote the class of all MV-algebras
(MV-chains resp.)

Take the algebra [0, 1]� = 〈[0, 1],⊕,¬, 0〉, with operations defined as:

¬a = 1− a a⊕ b = min{1, a + b}.

Proposition 2.33
[0, 1]� is the unique (up to isomorphism) MV-chain with the lattice
reduct 〈[0, 1],min,max, 0, 1〉.

Exercise 10 (Easy)
Check that [0, 1]� is an MV-chain and find another MV-chain
isomorphic to [0, 1]� with the same lattice reduct.
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General notion of semantical consequence

Definition 2.34
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ→ ψ) = e(ϕ)→B e(ψ) = ¬Be(ϕ)⊕B e(ψ)

e(ϕ ∧ ψ) = e(ϕ) ∧B e(ψ) = · · ·
e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ) = · · ·

Definition 2.35
A formula ϕ is a logical consequence of a theory T
w.r.t. a class K of MV-algebras, T |=K ϕ,
if for every B ∈ K and every B-evaluation e:

if e(γ) = 1B for every γ ∈ T, then e(ϕ) = 1B.
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Some theorems and derivations of Ł

Proposition 2.36
(T1) `� ϕ→ ϕ
(T2) `� ϕ→ (ψ → ϕ ∧ ψ)

(D1) ϕ↔ 1 `� ϕ and ϕ `� ϕ↔ 1
(D2) ϕ→ ψ `� ϕ ∧ ψ ↔ ϕ and ϕ ∧ ψ ↔ ϕ `� ϕ→ ψ

Proposition 2.37

`� ϕ⊕ ψ ↔ ψ ⊕ ϕ `� 0⊕ ϕ↔ ϕ

`� ϕ⊕ (ψ ⊕ χ)↔ (ϕ⊕ ψ)⊕ χ `� ϕ⊕ ¬0↔ ¬0
`� ¬(¬ϕ⊕ ψ)⊕ ψ ↔ ¬(¬ψ ⊕ ϕ)⊕ ϕ `� ¬¬ϕ↔ ϕ
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The rule of substitution

Proposition 2.38

`� ϕ↔ ϕ ϕ↔ ψ `� ψ ↔ ϕ ϕ↔ ψ,ψ ↔ χ `� ϕ↔ χ

ϕ↔ ψ `� (ϕ ∧ χ)↔ (ψ ∧ χ) ϕ↔ ψ `� (ϕ ∨ χ)↔ (ψ ∨ χ)
ϕ↔ ψ `� (χ ∧ ϕ)↔ (χ ∧ ϕ) ϕ↔ ψ `� (χ ∨ ϕ)↔ (χ ∨ ψ)
ϕ↔ ψ `� (ϕ→ χ)↔ (ψ → χ) ϕ↔ ψ `� (χ→ ϕ)↔ (χ→ ψ)

Corollary 2.39
ϕ↔ ψ `� χ↔ χ′, where χ′ results from χ by replacing

its subformula ϕ by ψ.

Exercise 11 (Difficult and tedious; but can be automatized)
Prove this corollary and the three previous propositions.
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Linear Extensions Property

A theory T is linear if T `� ϕ→ ψ or T `� ψ → ϕ for each ϕ,ψ.

Lemma 2.40 (Linear Extension Property)
If T 0� ϕ, then there is linear theory T ′ ⊇ T s.t. T ′ 0� ϕ.

The proof is the same as in the case of Gödel–Dummett logic using
the Semilinearity property we have proved in the previous section.
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Lindenbaum–Tarski algebra

Definition 2.41
Let T be a theory. We define

[ϕ]T = {ψ | T `� ϕ↔ ψ} LT = {[ϕ]T | ϕ ∈ FmL}

The Lindenbaum–Tarski algebra of a theory T (LindTT ) as an algebra
with the domain LT and operations:

0LindTT = [0]T

¬LindTT [ϕ]T = [ϕ→ 0]T

[ϕ]T ⊕LindTT [ψ]T = [¬ϕ→ ψ]T
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Lindenbaum–Tarski algebra: basic properties

Proposition 2.42

1 [ϕ]T = 1LindTT iff T `� ϕ.
2 [ϕ]T ≤ [ψ]T iff T `� ϕ→ ψ.
3 LindTT is an MV-algebra.
4 LindTT is an MV-chain iff T is linear.

Proof.
The same as in the case of Gödel–Dummett logic we only use
Proposition 2.37 to prove 3.
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Three completeness theorems

Theorem 2.43
The following are equivalent for every theory T and a formula ϕ:

1 T `� ϕ
2 T |=MV ϕ w.r.t. general semantics
3 T |=MVlin ϕ w.r.t. linear semantics

If T is finite we can add:
4 T |=[0,1]� ϕ w.r.t. standard semantics

Exercise 12 (Easy)
Prove the equivalence of the first three claims.

We give a proof of 3. implies 4. but first . . .
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MV-algebras and LOAGs
A lattice ordered Abelian group (LOAG for short) is a structure
〈G,+, 0,−,≤〉 s.t. 〈G,+, 0,−〉 is an Abelian group and:

(i) 〈G,≤〉 is a lattice,
(ii) if x ≤ y, then x + z ≤ y + z for all z ∈ G.

A strong unit u is an element s.t.

(∀x ∈ G)(∃n ∈ N)(x ≤ nu)

For LOAG G = 〈G,+, 0,−,≤〉 and strong unit u we define algebra
Γ(G, u) = 〈[0, u],⊕,¬, 0〉, where x⊕ y = min{u, x + y}, ¬x = u− x, 0 = 0.

By R we denote the additive LOAG of reals.

Proposition 2.44
Γ(G, u) is an MV-algebra and for each u > 0 is Γ(R, u) isomorphic to
the standard MV-algebra [0, 1]�.
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Proof of std. completeness of Łukasiewicz logic

If T 6`� ϕ we know that there is countable MV-chain B s.t. T 6|=B ϕ. Let
x1, . . . , xn be variables occurring in T ∪ {ϕ}. Then:

6|=B (∀x1, . . . , xn)
∧
ψ∈T

(ψ ≈ 1)⇒ (ϕ ≈ 1)

Let us define algebra B′ = 〈Z × B,+,−, 0〉 as:

〈i, x〉+ 〈j, y〉 =

{
〈i + j, x⊕ y〉 if x & y = 0

〈i + j + 1, x & y〉 otherwise

−〈i, x〉 = 〈−i− 1,¬x〉 and 0 = 〈0, 0〉

Proposition 2.45

B′ is a LOAG and B = Γ(B′, 〈1, 0〉).
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Proof of std. completeness of Łukasiewicz logic

Let us fix an extra variable u, we define a translation of MV-terms into
LOAG-terms:

x′ = x 0′ = 0 (¬t)′ = u− t′ (t1 ⊕ t2)′ = (t′1 + t′2) ∧ u.

Recall that we have:

6|=B (∀x1, . . . , xn)
∧
ψ∈T

(ψ ≈ 1)⇒ (ϕ ≈ 1),

Thus also:

6|=B′ (∀u)(∀x1, . . . , xn)[(0 < u)∧
∧
i≤n

(xi ≤ u)∧(0 ≤ xi)∧
∧
ψ∈T

(ψ′ ≈ 1)⇒ (ϕ′ ≈ 1)]

Petr Cintula (ICS CAS) Mathematical Aspects of Many-Valued Logics 58 / 68



Proof of std. completeness of Łukasiewicz logic

Gurevich–Kokorin theorem: each ∀1-sentence of LOAGs is true in
additive LOAG of reals iff it is true in all linearly ordered LOAGs.
Thus

6|=R (∀u)(∀x1, . . . , xn)[(0 < u)∧
∧
i≤n

(xi ≤ u)∧(0 ≤ xi)∧
∧
ψ∈T

(ψ′ ≈ 1)⇒ (ϕ′ ≈ 1)]

And so
6|=Γ(R,u) (∀x1, . . . , xn)

∧
ψ∈T

(ψ ≈ 1)⇒ (ϕ ≈ 1)

And so
6|=[0,1]� (∀x1, . . . , xn)

∧
ψ∈T

(ψ ≈ 1)⇒ (ϕ ≈ 1)

i.e., T 6|=[0,1]� ϕ
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What is a logic? (as a mathematical object) (and for us here)

Convention
A logic is a provability relation on formulae in a language L ⊇ {→,∨, 1}
axiomatized by axioms axioms Ax and rules Ru s.t.

`L ϕ→ ϕ ϕ,ϕ→ ψ `L ψ ϕ→ ψ,ψ → χ `L ϕ→ χ

ϕ `L 1→ ϕ 1→ ϕ `L ϕ

`L ϕ→ ϕ ∨ ψ `L ψ → ϕ ∨ ψ ϕ→ χ, ψ → χ `L ϕ ∨ ψ → χ

for each n-ary connective c ∈ L, L-formulae ϕ,ψ, χ1, . . . , χn, and
each i < n the following holds:

ϕ→ ψ,ψ → ϕ `L c(χ1, . . . , χi, ϕ, . . . , χn)↔ c(χ1, . . . , χi, ψ, . . . , χn)

each of the rules has only finitely many premises

We fix a logic L in language L with axioms Ax and rules Ru.
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Semantical consequence w.r.t. a class of G-algebras

Definition 2.46
A B-evaluation is a mapping e from FmL to B such that:

e(0) = 0B

e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ)

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

e(ϕ ∧ ψ) = e(ϕ) ∧B e(ψ)

Definition 2.47
A formula ϕ is a logical consequence of a theory T
w.r.t. a class K of G-algebras, T |=K ϕ,
if for every B ∈ K and every B-evaluation e:

if e(γ) = 1B for every γ ∈ T, then e(ϕ) = 1B.
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Semantical consequence w.r.t. a class of L-algebras

Definition 2.48
A B-evaluation is a mapping e from FmL to B such that:

e(1) = 1B

e(ϕ ∨ ψ) = e(ϕ) ∨B e(ψ)

e(ϕ→ ψ) = e(ϕ)→B e(ψ)

e(c(χ1, . . . , χn)) = cB(e(χ1), . . . , e(χn)) for each n-ary c ∈ L

Definition 2.49
A formula ϕ is a logical consequence of a theory T
w.r.t. a class K of L-algebras, T |=K ϕ,
if for every B ∈ K and every B-evaluation e:

if e(γ) ∨B 1B
= e(γ) for every γ ∈ T, then e(ϕ) ∨B 1B

= e(ϕ).
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Algebraic semantics and semilinear logic

For each L there is a class L of L-algebras st. for every theory T and a
formula ϕ we have:

T `L ϕ if, and only if, T |=L ϕ.

Each L-algebra A can be ordered:

x ≤A y IFF x ∨A y = y IFF 1A ≤ x→A y

Let us by Llin of L-algebras which are linearly ordered

Definition 2.50
We say that a logic L is semilinear if for every theory T and a formula ϕ
we have:

T `L ϕ if, and only if, T |=Llin ϕ.
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Syntactical characterization of semilinearity

Theorem 2.51 (Syntactical characterization)
Let L be axiomatized by axioms Ax and rules Ru. TFAE:

1 L is a semilinear logic

2 If T 6`L ϕ then there is a linear theory S ⊇ T s.t. S 6`L ϕ

3 For every set of formulae T ∪ {ϕ,ψ, χ}:

T, ϕ→ ψ `L χ and T, ψ → ϕ `L χ imply T `L χ.

4 `L (ϕ→ ψ) ∨ (ψ → ϕ) and for every set of formulae T ∪ {ϕ,ψ, χ}:

T, ϕ `L χ and T, ψ `L χ imply T, ϕ ∨ ψ `L χ.

5 `L (ϕ→ ψ) ∨ (ψ → ϕ) and if T `L ϕ, then T ∨ χ `L ϕ ∨ χ for all χs

6 `L (ϕ→ ψ) ∨ (ψ → ϕ) and if T ` ϕ ∈ Ru, then
T ∨ χ `L ϕ ∨ χ for all χs
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Semantical characterization of semilinearity

Theorem 2.52 (Semantic characterization)
Let L be a logic. TFAE:

1 L is a semilinear logic
2 the finitely relatively subdirectly irreducible L-algebras are exactly

the L-chains
3 the relatively subdirectly irreducible L-algebras are linearly

ordered
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The moral of the story . . .

1 fuzzy logics are not so different from the classical logic, they have
I Hilbert style axiomatizations

(and even analytic proof system based on the hypersequents)
I semantics based on real numbers or (linearly) ordered algebras
I a completeness theorem linking those two facets
I usually a co-NP-complete set of theorems (e.g. Łukasiewicz or G)

2 but there are funny things going on:
I deduction theorem could fail
I compactness and finitarity are two different notions
...

3 numerous different fuzzy logics can be designed playing with
the axiomatization or the semantics
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If you want to know more . . .

P. Cintula, P. Hájek, C. Noguera (editors). Vol. 37 and 38 of Studies in
Logic: Math. Logic and Foundations. College Publications, 2011.

Petr Cintula (ICS CAS) Mathematical Aspects of Many-Valued Logics 68 / 68


	Gödel–Dummett logic
	Gödel–Dummett logic: The proof of completeness
	Łukasiewicz logic
	Łukasiewicz logic: The proof of completeness
	General theory of fuzzy logics

