Mathematical Aspects of Many-Valued Logics

Petr Cintula

Institute of Computer Science,
Academy of Sciences of the Czech Republic
Prague, Czech Republic

My plan

(1) formally present two prominent fuzzy logics:

- Gödel-Dummett logic
- Łukasiewicz logic
and to do so in two different ways:
- using (almost classical) Hilbert style axiomatization
- using (highly non-classical, yet surprisingly 'natural') semantics
(2) give a (hint of a) proof of the completeness theorem (the equality of these two ways)
- for the Gödel-Dummett logic and
- show why the same proof would not work for Łukasiewicz logic and how to overcome this problem
(3) show that the same proof would work in a much more general setting for an arbitrary logic satisfying certain minimal conditions

The basic syntax: no change there

We consider primitive connectives $\mathcal{L}=\{\overline{0}, \wedge, \vee, \rightarrow\}$ and defined connectives $\neg, \overline{1}$, and \leftrightarrow :

$$
\neg \varphi=\varphi \rightarrow \overline{0} \quad \overline{1}=\neg \overline{0} \quad \varphi \leftrightarrow \psi=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)
$$

Formulae are built from a fixed countable set of atoms using the connectives.

Let us by $F m_{\mathcal{L}}$ denote the set of all formulae.

Recall the semantics of classical logic

Definition 2.1

A 2 -evaluation is a mapping e from $F m_{\mathcal{L}}$ to $\{0,1\}$; s.t.:

- $e(\overline{0})=\overline{0}^{2}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{2} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{2} e(\psi)=\max \{e(\varphi), e(\psi)\}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\mathbf{2}} e(\psi)= \begin{cases}1 & \text { if } e(\varphi) \leq e(\psi), \\ 0 & \text { otherwise. }\end{cases}$

Definition 2.2

A formula φ is a logical consequence of a theory T (in classical logic), $T \models_{\mathbf{2}} \varphi$, if for every $\mathbf{2}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1
$$

Recall the semantics of classical logic

Definition 2.1

A 2 -evaluation is a mapping e from $\mathrm{Fm}_{\mathcal{L}}$ to $\{0,1\}$; s.t.:

- $e(\overline{0})=\overline{0}^{2}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{2} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{2} e(\psi)=\max \{e(\varphi), e(\psi)\}$
$e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{2} e(\psi)= \begin{cases}1 & \text { if } e(\varphi) \leq e(\psi), \\ e(\psi) & \text { otherwise } .\end{cases}$

Definition 2.2

A formula φ is a logical consequence of a theory T (in classical logic), $T \models_{\mathbf{2}} \varphi$, if for every $\mathbf{2}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1
$$

Changing the semantics

Definition 2.3

$\mathrm{A}[0,1]_{\mathrm{G}}$-evaluation is a mapping e from $F m_{\mathcal{L}}$ to $[0,1]$; s.t.:

- $e(\overline{0})=\overline{0}^{[0,1]_{\mathrm{G}}}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{[0,1]_{\mathrm{G}}} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{[0,1]_{\mathrm{G}}} e(\psi)=\max \{e(\varphi), e(\psi)\}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{[0,1]_{\mathrm{G}}} e(\psi)= \begin{cases}1 & \text { if } e(\varphi) \leq e(\psi), \\ e(\psi) & \text { otherwise. }\end{cases}$

Definition 2.4

A formula φ is a logical consequence of a theory T (in Gödel-Dummett logic), $T \models_{[0,1]_{\mathrm{G}}} \varphi$, if for every $[0,1]_{\mathrm{G}}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1 \text {. }
$$

Changing the semantics

Some classical properties fail in $\models_{[0,1]_{\mathrm{G}}}$:

- $\not \vDash_{[0,1]_{\mathrm{G}}} \neg \neg \varphi \rightarrow \varphi$

$$
\neg \neg \frac{1}{2} \rightarrow \frac{1}{2}=1 \rightarrow \frac{1}{2}=\frac{1}{2}
$$

- $\not \vDash_{[0,1]_{\mathrm{G}}} \varphi \vee \neg \varphi$ $\frac{1}{2} \vee \neg \frac{1}{2}=\frac{1}{2}$
- $\not \vDash_{[0,1]_{\mathrm{G}}} \neg(\neg \varphi \wedge \neg \psi) \rightarrow \varphi \vee \psi$ $\neg\left(\neg \frac{1}{2} \wedge \neg \frac{1}{2}\right) \rightarrow \frac{1}{2} \vee \frac{1}{2}=1 \rightarrow \frac{1}{2}=\frac{1}{2}$
- $\vDash_{[0,1]_{\mathrm{G}}}((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$

$$
\left(\left(\frac{1}{2} \rightarrow 0\right) \rightarrow 0\right) \rightarrow\left(\left(0 \rightarrow \frac{1}{2}\right) \rightarrow \frac{1}{2}\right)=1 \rightarrow \frac{1}{2}=\frac{1}{2}
$$

Recall a proof system for classical logic

The axioms are:

(A1)	$(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2)	$\varphi \rightarrow(\psi \rightarrow \varphi)$
(A3)	$(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4)	$(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a)	$\varphi \wedge \psi \rightarrow \varphi$
(A5b)	$\varphi \wedge \psi \rightarrow \psi$
(A5c)	$(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a)	$\varphi \rightarrow \varphi \vee \psi$
(A6b)	$\psi \rightarrow \varphi \vee \psi$
(A6c)	$(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7)	$\overline{0} \rightarrow \varphi$
(A8)	$(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$
(A9)	$((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.
We write $T \vdash_{\mathrm{CL}} \varphi$ if there is a proof of φ from T in classical logic.

A proof system for Gödel-Dummett logic

The axioms are:

(A1)	$(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2)	$\varphi \rightarrow(\psi \rightarrow \varphi)$
(A3)	$(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4)	$(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a)	$\varphi \wedge \psi \rightarrow \varphi$
(A5b)	$\varphi \wedge \psi \rightarrow \psi$
(A5c)	$(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a)	$\varphi \rightarrow \varphi \vee \psi$
(A6b)	$\psi \rightarrow \varphi \vee \psi$
(A6c)	$(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7)	$\overline{0} \rightarrow \varphi$
(A8)	$(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.
We write $T \vdash_{\mathrm{G}} \varphi$ if there is a proof of φ from T in Gödel-Dummett logic.

Completeness theorem for classical logic

Theorem 2.5
For every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{CL}} \varphi \text { if, and only if, } T \models_{2} \varphi .
$$

Completeness theorem for Gödel-Dummett logic

Theorem 2.6

For every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{G}} \varphi \text { if, and only if, } T \models_{[0,1]_{\mathrm{G}}} \varphi .
$$

Recall a proof system for classical logic

The axioms are:
(A1) $\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2) $\quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(A3) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4) $\quad(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a) $\quad \varphi \wedge \psi \rightarrow \varphi$
(A5b) $\quad \varphi \wedge \psi \rightarrow \psi$
(A5c) $\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a) $\quad \varphi \rightarrow \varphi \vee \psi$
(A6b) $\quad \psi \rightarrow \varphi \vee \psi$
(A6c) $\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7) $\quad \overline{0} \rightarrow \varphi$
(A8) $\quad(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$
(A9) $\quad((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$
The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.

A proof system for Gödel-Dummett logic

The axioms are:
(A1) $\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2) $\quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(A3) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4) $\quad(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a) $\quad \varphi \wedge \psi \rightarrow \varphi$
(A5b) $\quad \varphi \wedge \psi \rightarrow \psi$
(A5c) $\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a) $\quad \varphi \rightarrow \varphi \vee \psi$
(A6b) $\quad \psi \rightarrow \varphi \vee \psi$
(A6c) $\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7) $\quad \overline{0} \rightarrow \varphi$
(A8) $\quad(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.

Relation to intuitionistic logic

The intuitionistic logic has axioms:
(A1) $\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2) $\quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(A3) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A5a) $\quad \varphi \wedge \psi \rightarrow \varphi$
(A5b) $\quad \varphi \wedge \psi \rightarrow \psi$
(A5c) $\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a) $\quad \varphi \rightarrow \varphi \vee \psi$
(A6b) $\quad \psi \rightarrow \varphi \vee \psi$
(A6c) $\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7) $\quad \overline{0} \rightarrow \varphi$
(A8) $\quad(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.

Algebraic semantics

A Heyting-algebra is a structure $\boldsymbol{B}=\left\langle\boldsymbol{B}, \wedge^{\boldsymbol{B}}, \vee^{\boldsymbol{B}}, \rightarrow^{\boldsymbol{B}}, \overline{0}^{\boldsymbol{B}}, \overline{1}^{\boldsymbol{B}}\right\rangle$ such that:
(1) $\left\langle\boldsymbol{B}, \wedge^{\boldsymbol{B}}, \vee^{\boldsymbol{B}}, \overline{0}^{\boldsymbol{B}}, \overline{1}^{\boldsymbol{B}}\right\rangle$ is a bounded lattice,
(2) $z \leq x \rightarrow^{\boldsymbol{B}} y$ iff $x \wedge^{\boldsymbol{B}} z \leq y$, (residuation)
where $x \leq y$ is defined as $x \wedge y=x$ or (equivalently) as $x \rightarrow y=\overline{1}$.
We say that \boldsymbol{B} is

- Gödel algebra (or just G-algebra) whenever

$$
(x \rightarrow y) \vee(y \rightarrow x)=\overline{1} \quad \text { (prelinearity) }
$$

- linearly ordered (or Heyting chain) if \leq is a total order.

Note that each Heyting chain is G-algebra, so we also call it G-chain.
By \mathbb{G} (or $\mathbb{G}_{\text {lin }}$ resp.) we denote the class of all G-algebras (G-chains resp.)

Standard semantics

Consider algebra $[0,1]_{\mathrm{G}}=\left\langle[0,1], \wedge^{[0,1]_{\mathrm{G}}}, \vee^{[0,1]_{\mathrm{G}}}, \rightarrow^{[0,1]_{\mathrm{G}}}, 0,1\right\rangle$, where:

$$
\begin{gathered}
a \wedge^{[0,1]_{\mathrm{G}}} b=\min \{a, b\} \\
a \vee^{[0,1]_{\mathrm{G}}} b=\max \{a, b\} \\
a \rightarrow^{[0,1]_{\mathrm{G}}} b= \begin{cases}1 & \text { if } a \leq b, \\
b & \text { otherwise. }\end{cases}
\end{gathered}
$$

Exercise 1 (Easy)

Prove that $[0,1]_{\mathrm{G}}$ is the unique G-chain with the lattice reduct $\langle[0,1], \min , \max , 0,1\rangle$.

Recall the notion of $[0,1]_{\mathrm{G}}$-evaluation

Definition 2.7

$\mathrm{A}[0,1]_{\mathrm{G}}$-evaluation is a mapping e from $F m_{\mathcal{L}}$ to $[0,1]$; s.t.:

- $e(\overline{0})=\overline{0}^{[0,1] \mathrm{G}}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{[0,1]_{\mathrm{G}}} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{[0,1]_{\mathrm{G}}} e(\psi)=\max \{e(\varphi), e(\psi)\}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{[0,1]_{\mathrm{G}}} e(\psi)=\cdots$

Definition 2.8

A formula φ is a logical consequence of set of a theory T in Gödel-Dummett logic, $T \models_{[0,1]_{\mathrm{G}}} \varphi$, if for every $[0,1]_{\mathrm{G}}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1 \text {. }
$$

General notion of semantical consequence

Definition 2.9

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{0})=\overline{0}^{B}$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)$

Definition 2.10

A formula φ is a logical consequence of a theory T w.r.t. a class \mathbb{K} of G-algebras, $T \models_{\mathbb{K}} \varphi$, if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma)=\overline{1}^{\boldsymbol{B}} \text { for every } \gamma \in T \text {, then } e(\varphi)=\overline{1}^{\boldsymbol{B}} .
$$

Three completeness theorems

Theorem 2.11
The following are equivalent for every theory T and a formula φ :
(1) $T \vdash_{\mathrm{G}} \varphi$
(2) $T \models_{\mathbb{G} \varphi} \varphi$
w.r.t. general semantics
(c) $T \models_{\mathbb{G}_{\text {lin }}} \varphi$ w.r.t. linear semantics
(c) $T \models_{[0,1]_{\mathrm{G}}} \varphi$ w.r.t. standard semantics

Exercise 2 (Medium)

Prove the implications from top to bottom.

Some theorems and derivations in G

Proposition 2.12

(T1) $\vdash_{\mathrm{G}} \varphi \rightarrow \varphi$
(T2) $\vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \varphi \wedge \psi)$
(D1) $\varphi \leftrightarrow \overline{1} \vdash_{\mathrm{G}} \varphi$ and $\varphi \vdash_{\mathrm{G}} \varphi \leftrightarrow \overline{1}$
(D2) $\varphi \rightarrow \psi \vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \varphi$ and $\varphi \wedge \psi \leftrightarrow \varphi \vdash_{\mathrm{G}} \varphi \rightarrow \psi$
(D3) $\varphi \rightarrow(\psi \rightarrow \chi) \vdash_{\mathrm{G}} \varphi \wedge \psi \rightarrow \chi$ and $\varphi \wedge \psi \rightarrow \chi \vdash_{\mathrm{G}} \varphi \rightarrow(\psi \rightarrow \chi)$

Proposition 2.13

$$
\begin{array}{ll}
\vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \psi \wedge \varphi & \vdash_{\mathrm{G}} \varphi \vee \psi \leftrightarrow \psi \vee \varphi \\
\vdash_{\mathrm{G}} \varphi \wedge(\psi \wedge \chi) \leftrightarrow(\varphi \wedge \psi) \wedge \chi & \vdash_{\mathrm{G}} \varphi \vee(\psi \vee \chi) \leftrightarrow(\varphi \vee \psi) \vee \chi \\
\vdash_{\mathrm{G}} \varphi \wedge(\varphi \vee \psi) \leftrightarrow \varphi & \vdash_{\mathrm{G}} \varphi \vee(\varphi \wedge \psi) \leftrightarrow \varphi \\
\vdash_{\mathrm{G}} \overline{1} \wedge \varphi \leftrightarrow \varphi & \vdash_{\mathrm{G}} \overline{0} \vee \varphi \leftrightarrow \varphi \\
\vdash_{\mathrm{G}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi) \leftrightarrow \overline{1} &
\end{array}
$$

The rule of substitution

Proposition 2.14

$$
\left.\begin{array}{cl}
\vdash_{\mathrm{G}} \varphi \leftrightarrow \varphi & \varphi \leftrightarrow \psi \vdash_{\mathrm{G}} \psi \leftrightarrow \varphi
\end{array} \quad \varphi \leftrightarrow \psi, \psi \leftrightarrow \chi \vdash_{\mathrm{G}} \varphi \leftrightarrow \chi\right)
$$

Corollary 2.15
$\varphi \leftrightarrow \psi \vdash_{\mathrm{G}} \chi \leftrightarrow \chi^{\prime}$, where χ^{\prime} results from χ by replacing its subformula φ by ψ.

Exercise 3 (Difficult and tedious; but can be automatized)
Prove this corollary and the three previous propositions.

Lindenbaum-Tarski algebra

Definition 2.16
Let T be a theory. We define

$$
[\varphi]_{T}=\left\{\psi \mid T \vdash_{\mathrm{G}} \varphi \leftrightarrow \psi\right\} \quad L_{T}=\left\{[\varphi]_{T} \mid \varphi \in F m_{\mathcal{L}}\right\}
$$

The Lindenbaum-Tarski algebra of a theory $T\left(\mathbf{L i n d}_{T}\right)$ as an algebra with the domain L_{T} and operations:

$$
\begin{aligned}
& \overline{0}^{\mathbf{L i n d} \mathbf{T i}_{T}}=[\overline{0}]_{T} \\
& {[\varphi]_{T} \rightarrow^{\mathbf{L i n d} \mathbf{T i}_{T}}[\psi]_{T}=[\varphi \rightarrow \psi]_{T}} \\
& {[\varphi]_{T} \vee^{\operatorname{LindT}_{T}}[\psi]_{T}=[\varphi \vee \psi]_{T}} \\
& {[\varphi]_{T} \wedge{ }^{\operatorname{LindT}_{T}}[\psi]_{T}=[\varphi \wedge \psi]_{T}}
\end{aligned}
$$

Exercise 4 (Easy)

Prove that the definition of Lind_{T} is sound.

Lindenbaum-Tarski algebra: basic properties

Proposition 2.17

(1) $[\varphi]_{T}=\overline{1}^{\mathrm{LindT}_{T}}$ iff $T \vdash_{\mathrm{G}} \varphi$.
(2) $[\varphi]_{T} \leq[\psi]_{T}$ iff $T \vdash_{\mathrm{G}} \varphi \rightarrow \psi$.
(0) LindT_{T} is a G-algebra.

Proof.

1. $[\varphi]_{T}=[\overline{1}]_{T}$ iff $T \vdash_{\mathrm{G}} \varphi \leftrightarrow \overline{1}$ iff (by (D1)) $T \vdash_{\mathrm{G}} \varphi$.
2. $[\varphi]_{T} \leq[\psi]_{T}$ iff $[\varphi]_{T} \wedge[\psi]_{T}=[\varphi]_{T}$ iff $[\varphi \wedge \psi]_{T}=[\varphi]_{T}$ iff $T \vdash_{\mathrm{G}} \varphi \wedge \psi \leftrightarrow \varphi$ iff (by (D2)) $T \vdash_{\mathrm{G}} \varphi \rightarrow \psi$.
3. The validity of identities follows from Proposition 2.13 and the residuation from (D3): $[\varphi]_{T} \leq[\psi]_{T} \rightarrow[\chi]_{T}$ iff $T \vdash \varphi \rightarrow(\psi \rightarrow \chi)$ iff $T \vdash_{\mathrm{G}} \varphi \wedge \psi \rightarrow \chi$ iff $[\varphi]_{T} \wedge[\psi]_{T} \leq[\chi]_{T}$.

Lindenbaum-Tarski algebras

Proposition 2.18

For each theory T there is a G-algebra $\mathbf{L i n d}_{T}$ (called the Linden-baum-Tarski algebra of the theory T) and an Lind_{T}-evaluation $e_{T} s t$
(1) $e_{T}(\chi)=\overline{1}^{\mathbf{L i n d T}_{T}}$ iff $T \vdash \chi$.
(2) LindT $_{T}$ is a G-chain iff $T \vdash_{\mathrm{G}} \psi \rightarrow \chi$ or $T \vdash_{\mathrm{G}} \chi \rightarrow \psi$ for each ψ, χ.

A theory T is linear if $T \vdash_{\mathrm{G}} \varphi \rightarrow \psi$ or $T \vdash_{\mathrm{G}} \psi \rightarrow \varphi$ for each φ, ψ.

Exercise 5 (Easy)

Prove it.

The proof of the first (general) completeness

Theorem 2.19
For every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{G}} \varphi \text { if, and only if, } T \models_{\mathbb{G}} \varphi .
$$

Proof.

Assume that $T \nvdash_{\mathrm{G}} \varphi$
Take the G-algebra LindT_{T}
Take the $\mathbf{L i n d T}_{T}$-evaluation e_{T}, recall that $e_{T}(\chi)=\overline{1}^{\operatorname{LindT}_{T}}$ iff $T \vdash \chi$ Clearly $e_{T}(\varphi) \neq \overline{1}^{\text {LindT }_{T}}$ and
$e_{T}(\chi)=1^{\text {LindT }_{T}}$ for each $\chi \in T$ (because $T \vdash_{G} \chi$)

The proof of the second (linear) completeness

Theorem 2.20
For every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{G}} \varphi \text { if, and only if, } T \models_{\mathbb{G}_{\text {lin }}} \varphi .
$$

Proof.

Assume that $T \vdash_{\mathrm{G}} \varphi$ and that there is linear $S \supseteq T$ st. $S \vdash_{\mathrm{G}} \varphi$
Take the G-algebra LindT_{S}, we know that it is a G-chain
Take the $\operatorname{LindT}_{S^{\prime}}$-evaluation e_{S}, recall that $e_{S}(\chi)=\overline{1}^{\operatorname{LindT}_{T^{\prime}}}$ iff $S \vdash \chi$ Clearly $e_{S}(\varphi) \neq 1^{\text {LindT }_{S}}$ and
$e_{S}(\chi)=\overline{1}^{\text {LindT }_{S}}$ for each $\chi \in T$ (because $S \vdash_{G} \chi$)

Linear Extension Property

A theory T is linear if $T \vdash_{\mathrm{G}} \varphi \rightarrow \psi$ or $T \vdash_{\mathrm{G}} \psi \rightarrow \varphi$ for each φ, ψ.
Lemma 2.21 (Linear Extension Property)
If $T \nvdash_{\mathrm{G}} \varphi$, then there is linear theory $S \supseteq T$ s.t. $S \nvdash_{\mathrm{G}} \varphi$.

Proof.

Assume that $T \nvdash_{\mathrm{L}} \varphi$
Take a maximal $S \supseteq T$ s.t. $S \not_{\mathrm{L}} \varphi$ (it exists due to the Zorn's lemma)
Assume that S is not linear, i.e., there are formulae ψ, χ

$$
\text { s.t. } S \nvdash_{\mathrm{L}} \psi \rightarrow \chi \text { and } S \nvdash_{\mathrm{L}} \chi \rightarrow \psi
$$

Then, due to the maximality of $S: S, \psi \rightarrow \chi \vdash_{\mathrm{L}} \varphi$ and $S, \chi \rightarrow \psi \vdash_{\mathrm{L}} \varphi$ If we would know that this implies: $S \vdash_{\mathrm{L}} \varphi$, we have a contradiction!

Semilinearity Property

Lemma 2.22 (Semilinearity Property)

If $T, \psi \rightarrow \chi \vdash_{\mathrm{G}} \varphi$ and $T, \chi \rightarrow \psi \vdash_{\mathrm{G}} \varphi$, then $T \vdash_{\mathrm{G}} \varphi$.

Proof.

If we would know that G has the deduction theorem:
$T \vdash_{\mathrm{G}}(\psi \rightarrow \chi) \rightarrow \varphi$ and $T \vdash_{\mathrm{G}}(\chi \rightarrow \psi) \rightarrow \varphi$
Thus by axiom (A6c) $T \vdash_{\mathrm{G}}(\psi \rightarrow \chi) \vee(\chi \rightarrow \psi) \rightarrow \varphi$
Then axiom (A4) completes the proof.

Deduction Theorem

Theorem 2.23 (Deduction theorem)
For every set of formulae $T \cup\{\varphi, \psi\}$,

$$
T, \varphi \vdash_{\mathrm{G}} \psi \text { iff } T \vdash_{\mathrm{G}} \varphi \rightarrow \psi
$$

Exercise 6 (Medium)
Prove it.

The proof of the third (standard) completeness

Contrapositively: assume that $T \Vdash_{\mathrm{G}} \varphi$. Let \boldsymbol{B} be a countable G-chain ${ }^{1}$ and e a \boldsymbol{B}-evaluation such that $e[T] \subseteq\left\{\overline{1}^{\boldsymbol{B}}\right\}$ and $e(\varphi) \neq \overline{1}^{\boldsymbol{B}}$.
There has to be (because every countable order can be monotonously embedded into a dense one) a mapping $f: B \rightarrow[0,1]$ such that $f(\overline{0})=0, f(\overline{1})=1$, and for each $a, b \in B$ we have:

$$
a \leq b \quad \text { iff } \quad f(a) \leq f(a)
$$

We define a mapping $\bar{e}: F m_{\mathcal{L}} \rightarrow[0,1]$ as

$$
\bar{e}(\psi)=f(e(\psi))
$$

and prove (by induction) that it is $[0,1]_{\mathrm{G}}$-evaluation.
Then $\bar{e}(\psi)=1$ iff $e(\psi)=\overline{1}^{B}$ and so $\bar{e}[T] \subseteq\{1\}$ and $\bar{e}(\varphi) \neq 1$.
${ }^{1}$ E.g. $\boldsymbol{B}=\operatorname{LindT}_{T^{\prime}}$ for some linear $T^{\prime} \supseteq T$ st. $T^{\prime} \nvdash_{G} \varphi$.

We still keep the classical syntax

We consider primitive connectives $\mathcal{L}=\{\overline{0}, \wedge, \vee, \rightarrow\}$ and defined connectives $\neg, \overline{1}$, and \leftrightarrow :

$$
\neg \varphi=\varphi \rightarrow \overline{0} \quad \overline{1}=\neg \overline{0} \quad \varphi \leftrightarrow \psi=(\varphi \rightarrow \psi) \wedge(\psi \rightarrow \varphi)
$$

Formulae are built from a fixed countable set of atoms using the connectives.

Let us by $F m_{\mathcal{L}}$ denote the set of all formulae.
But we also use additional connectives \oplus and $\&$ defined as:

$$
\varphi \oplus \psi=\neg \varphi \rightarrow \psi \quad \varphi \& \psi=\neg(\varphi \rightarrow \neg \psi)
$$

Recall the semantics of Gödel-Dummett logic

Definition 2.24

$\mathrm{A}[0,1]_{\mathrm{G}}$-evaluation is a mapping e from $F m_{\mathcal{L}}$ to $[0,1]$; s.t.:

- $e(\overline{0})=\overline{0}^{[0,1]_{\mathrm{G}}}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{[0,1]_{\mathrm{G}}} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{[0,1]_{\mathrm{G}}} e(\psi)=\max \{e(\varphi), e(\psi)\}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow{ }^{[0,1]_{\mathrm{G}}} e(\psi)= \begin{cases}1 & \text { if } e(\varphi) \leq e(\psi), \\ e(\psi) & \text { otherwise. }\end{cases}$

Definition 2.25

A formula φ is a logical consequence of a theory T (in Gödel-Dummett logic), $\left.T\right|_{[0,1]_{\mathrm{G}}} \varphi$, if for every $[0,1]_{\mathrm{G}}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1 \text {. }
$$

Changing the semantics (again)

Definition 2.26

A $[0,1]_{\mathrm{E}}$-evaluation is a mapping e from $F m_{\mathcal{L}}$ to $[0,1]$; s.t.:

- $e(\overline{0})=\overline{0}^{[0,1]_{ \pm}}=0$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{[0,1]_{ \pm}} e(\psi)=\min \{e(\varphi), e(\psi)\}$
- $e(\varphi \vee \psi)=e(\varphi) \vee \vee^{[0,1]_{\Sigma}} e(\psi)=\max \{e(\varphi), e(\psi)\}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{[0,1]_{ \pm}} e(\psi)= \begin{cases}1 & \text { if } e(\varphi) \leq \\ 1-e(\varphi)+e(\psi) & \text { otherwise }\end{cases}$

Definition 2.27

A formula φ is a logical consequence of a theory T
(in Łukasiewicz logic), $T \models_{[0,1]_{\mathrm{E}}} \varphi$, if for every $[0,1]_{\mathrm{E}}$-evaluation e :

$$
\text { if } e(\gamma)=1 \text { for every } \gamma \in T \text {, then } e(\varphi)=1 \text {. }
$$

Changing the semantics (again)

Some classical properties fail in $\models[0,1]_{\mathrm{E}}$:

- $\forall_{[0,1]_{ \pm}} \varphi \vee \neg \varphi$

$$
\frac{1}{2} \vee \neg \frac{1}{2}=\frac{1}{2}
$$

- $\forall_{[0,1]_{ \pm}}(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$

$$
\left(\frac{1}{2} \rightarrow\left(\frac{1}{2} \rightarrow 0\right)\right) \rightarrow\left(\frac{1}{2} \rightarrow 0\right)=1 \rightarrow \frac{1}{2}=\frac{1}{2}
$$

BUT other classical properties hold, e.g.:

- $\models_{[0,1]_{\mathrm{E}}} \neg \neg \varphi \rightarrow \varphi$
- $\models_{[0,1]_{\mathrm{E}}}((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$
- all De Morgan laws involving \neg, \vee, \wedge

Recall a proof system for classical logic

The axioms are:

(A1)	$(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2)	$\varphi \rightarrow(\psi \rightarrow \varphi)$
(A3)	$(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4)	$(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a)	$\varphi \wedge \psi \rightarrow \varphi$
(A5b)	$\varphi \wedge \psi \rightarrow \psi$
(A5c)	$(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a)	$\varphi \rightarrow \varphi \vee \psi$
(A6b)	$\psi \rightarrow \varphi \vee \psi$
(A6c)	$(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7)	$\overline{0} \rightarrow \varphi$
(A8)	$(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$
(A9)	$((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.
We write $T \vdash_{\mathrm{CL}} \varphi$ if there is a proof of φ from T in classical logic.

Recall a proof system for Gödel-Dummett logic

The axioms are:
(A1) $\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))$
(A2) $\quad \varphi \rightarrow(\psi \rightarrow \varphi)$
(A3) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))$
(A4) $\quad(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$
(A5a) $\quad \varphi \wedge \psi \rightarrow \varphi$
(A5b) $\quad \varphi \wedge \psi \rightarrow \psi$
(A5c) $\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))$
(A6a) $\quad \varphi \rightarrow \varphi \vee \psi$
(A6b) $\quad \psi \rightarrow \varphi \vee \psi$
(A6c) $\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$
(A7) $\quad \overline{0} \rightarrow \varphi$
(A8) $\quad(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.
We write $T \vdash_{\mathrm{G}} \varphi$ if there is a proof of φ from T in Gödel-Dummett logic.

A proof system for Łukasiewicz logic

The axioms are:

```
(A1) \(\quad(\varphi \rightarrow \psi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \chi))\)
(A2) \(\quad \varphi \rightarrow(\psi \rightarrow \varphi)\)
(A3) \(\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow(\psi \rightarrow(\varphi \rightarrow \chi))\)
(A4) \(\quad(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)\)
(A5a) \(\quad \varphi \wedge \psi \rightarrow \varphi\)
(A5b) \(\quad \varphi \wedge \psi \rightarrow \psi\)
(A5c) \(\quad(\chi \rightarrow \varphi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\chi \rightarrow \varphi \wedge \psi))\)
(A6a) \(\quad \varphi \rightarrow \varphi \vee \psi\)
(A6b) \(\quad \psi \rightarrow \varphi \vee \psi\)
(A6c) \(\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))\)
(A7) \(\quad \overline{0} \rightarrow \varphi\)
(A9) \(\quad((\varphi \rightarrow \psi) \rightarrow \psi) \rightarrow((\psi \rightarrow \varphi) \rightarrow \varphi)\)
```

The only inference rule is modus ponens: from $\varphi \rightarrow \psi$ and φ infer ψ.
We write $T \vdash_{€} \varphi$ if there is a proof of φ from T in Łukasiewicz logic.

Completeness theorem for Łukasiewicz logic

Theorem 2.28

For every finite theory T and a formula φ we have:

$$
T \vdash_{\mathrm{E}} \varphi \text { if, and only if, } T \models_{[0,1]_{\mathrm{E}}} \varphi .
$$

Exercise 7 (Easy)

Prove the implication from left to right.

Finitarity vs. compactness of $\models_{[0,1]_{\mathrm{E}}}$ and $\vdash_{\text {Ł }}$

Proposition 2.29

(1) $\models_{[0,1]_{ \pm}}$is compact i.e., if each finite $T^{\prime} \subseteq T$ there is an $[0,1]_{\mathrm{E}}$ - evaluation e st. e $\left[T^{\prime}\right] \subseteq\{1\}$, then there is an $[0,1]_{\mathrm{E}}$-evaluation e st. $e[T] \subseteq\{1\}$
(2) $\models_{[0,1]_{\mathrm{E}}}$ is not finitary i.e., there is $T \cup\{\varphi\}$ s.t. $T \models_{[0,1]_{\mathrm{E}}} \varphi$ but for no finite $T^{\prime} \subseteq T$ we have $T^{\prime} \models_{[0,1]_{\mathrm{E}}} \varphi$
(3) \vdash_{E} is finitary

- $a \oplus b=\min \{a+b, 1\}$

$$
\varphi \oplus \psi:=\neg \varphi \rightarrow \psi
$$

- $\Sigma=\{(p \oplus . \stackrel{n}{.} \oplus p) \rightarrow q \mid n \geq 1\} \cup\{\neg p \rightarrow q\}$
- $\Sigma \models_{[0,1]_{モ}} q$
- For every finite $\Sigma_{0} \subseteq \Sigma, \Sigma_{0} \not \vDash_{[0,1]_{£}} q$.

Thus we cannot have the strong completeness theorem $\vdash_{\mathrm{E}}=\models_{[0,1]_{\mathrm{E}}}$

A problem for the completeness proof

The 'normal' deduction theorem fails in €:

Proof.

Clearly $\varphi, \varphi \rightarrow(\varphi \rightarrow \psi) \vdash_{\text {E }} \psi$ (by using modus ponens twice)
But then by DT twice also $\vdash_{\mathrm{E}}(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)$
And so by soundness also: $\models_{[0,1]_{ \pm}}(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi) \ldots$
... which we know is not true.
We can only prove a local deduction theorem:
Theorem 2.30
For every theory T and formulae φ and ψ we have:

$$
T, \varphi \vdash_{\mathrm{E}} \psi \text { iff there is } n \geq 1 \text { such that } T \vdash_{\mathrm{E}} \varphi \& . \stackrel{n}{ } . \& \varphi \rightarrow \psi
$$

How do we get the Semilinearity Property?

Assume that we would be able to prove:
Theorem 2.31 (Proof by Cases Property)
If $T, \psi \vdash_{\mathrm{E}} \varphi$ and $T, \chi \vdash_{\mathrm{E}} \varphi$, then $T, \psi \vee \chi \vdash_{\mathrm{E}} \varphi$.

Then the Semilinearity Property easily follows using axiom (A4)

$$
(\psi \rightarrow \chi) \vee(\chi \rightarrow \psi)
$$

Lemma 2.32 (Semilinearity Property)
If $T, \psi \rightarrow \chi \vdash_{\mathrm{E}} \varphi$ and $T, \chi \rightarrow \psi \vdash_{\mathrm{E}} \varphi$, then $T \vdash_{\mathrm{E}} \varphi$.

A proof of the Proof by Cases Property

Exercise 8 (Medium)

	(P1)
Prove that	$\vdash_{\mathrm{E}} \varphi \vee \varphi \rightarrow \varphi$
	(P2)
$\vdash_{\mathrm{E}} \varphi \vee \psi \rightarrow \psi \vee \varphi$	
	(P3)
$\varphi \vee \chi,(\varphi \rightarrow \psi) \vee \chi \vdash_{\mathrm{E}} \psi \vee \chi$	

Assume:
$T, \psi \vdash_{€} \varphi$ and $T, \chi \vdash_{€} \varphi$
Assume that we know that: if $T \vdash_{€} \varphi$, then $\{\psi \vee \chi \mid \psi \in T\} \vdash_{€} \varphi \vee \chi$
Then:

$$
T \vee \chi, \psi \vee \chi \vdash_{€} \varphi \vee \chi \text { and } T \vee \varphi, \chi \vee \varphi \vdash_{€} \varphi \vee \varphi .
$$

Using (A6a), (P1), and (P2) we get $T, \psi \vee \chi \vdash_{\text {€ }} \chi \vee \varphi$ and $T, \chi \vee \varphi \vdash_{\mathrm{E}} \varphi$
Thus obviously:

$$
T, \psi \vee \chi \vdash_{€} \varphi
$$

A proof of the Proof by Cases Property

Exercise 8 (Medium)

	(P1)
Prove that	$\vdash_{\mathrm{E}} \varphi \vee \varphi \rightarrow \varphi$
	(P2)
$\vdash_{\mathrm{E}} \varphi \vee \psi \rightarrow \psi \vee \varphi$	
	(P3)
$\varphi \vee \chi,(\varphi \rightarrow \psi) \vee \chi \vdash_{\mathrm{E}} \psi \vee \chi$	

So we need to show that: \quad if $T \vdash_{\mathrm{E}} \varphi$, then $\{\psi \vee \chi \mid \psi \in T\} \vdash_{\mathrm{E}} \varphi \vee \chi$
We prove more: If $T \vdash_{£} \varphi$, then $T \vee \chi \vdash_{£} \delta \vee \chi$
for each δ appearing in the proof of φ from T.
It is trivial for $\delta \in T$ or δ an axiom
if we used MP, by IH there has to be η st.
$T \vee \chi \vdash_{\text {モ }} \eta \vee \chi \quad T \vee \chi \vdash_{\mathrm{E}}(\eta \rightarrow \delta) \vee \chi \quad$ thus (P3) completes the proof.

Algebraic semantics

An MV-algebra is a structure $\boldsymbol{B}=\langle\boldsymbol{B}, \oplus, \neg, \overline{0}\rangle$ such that:
(1) $\langle B, \oplus, \overline{0}\rangle$ is a commutative monoid,
(2) $\neg \neg x=x$,
(3) $x \oplus \neg \overline{0}=\neg \overline{0}$,
(4) $\neg(\neg x \oplus y) \oplus y=\neg(\neg y \oplus x) \oplus x$.

In each MV-algebra we define additional operations:

$$
\begin{array}{cll}
x \rightarrow y & \text { is } & \neg x \oplus y \\
x \& y & \text { is } & \neg(\neg x \oplus \neg y) \\
\text { implication } \\
x \wedge y & \text { is } x \&(x \rightarrow y) & \text { strong conjunction } \\
x \vee y & \text { is } & \neg(\neg x \wedge \neg y) \\
\overline{1} & \text { is } \neg \overline{0} & \text { max-disjunction } \\
\overline{0} & \text { top }
\end{array}
$$

Exercise 9 (Easy)

Prove that $\langle B, \wedge, \vee, \overline{0}, \overline{1}\rangle$ is a bounded lattice.

Algebraic semantics cont. and standard semantics

 We say that an MV-algebra \boldsymbol{B} is linearly ordered (or MV-chain) if its lattice reduct is.By $\mathbb{M V}$ (or $\mathbb{M} \mathbb{V}_{\text {lin }}$ resp.) we denote the class of all MV-algebras
(MV-chains resp.)
Take the algebra $[0,1]_{\mathrm{E}}=\langle[0,1], \oplus, \neg, 0\rangle$, with operations defined as:

$$
\neg a=1-a \quad a \oplus b=\min \{1, a+b\} .
$$

Proposition 2.33

$[0,1]_{\mathrm{E}}$ is the unique (up to isomorphism) MV-chain with the lattice reduct $\langle[0,1]$, min, max, 0,1\rangle.

Exercise 10 (Easy)

Check that $[0,1]_{\mathrm{E}}$ is an MV-chain and find another MV-chain isomorphic to $[0,1]_{\mathrm{E}}$ with the same lattice reduct.

General notion of semantical consequence

Definition 2.34

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{0})=\overline{0}^{B}$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)=\neg^{\boldsymbol{B}} e(\varphi) \oplus^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{\boldsymbol{B}} e(\psi)=\cdots$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)=\cdots$

Definition 2.35

A formula φ is a logical consequence of a theory T
w.r.t. a class \mathbb{K} of MV-algebras, $T \models_{\mathbb{K}} \varphi$, if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma)=\overline{1}^{B} \text { for every } \gamma \in T \text {, then } e(\varphi)=\overline{1}^{B} .
$$

Some theorems and derivations of $Ł$

Proposition 2.36

(T1) $\vdash_{\mathrm{E}} \varphi \rightarrow \varphi$
(T2) $\vdash_{\text {Ł }} \varphi \rightarrow(\psi \rightarrow \varphi \wedge \psi)$
(D1) $\varphi \leftrightarrow \overline{1} \vdash_{\mathrm{E}} \varphi$ and $\varphi \vdash_{\mathrm{E}} \varphi \leftrightarrow \overline{1}$
(D2) $\varphi \rightarrow \psi \vdash_{\text {€ }} \varphi \wedge \psi \leftrightarrow \varphi$ and $\varphi \wedge \psi \leftrightarrow \varphi \vdash_{\text {Ł }} \varphi \rightarrow \psi$

Proposition 2.37

$$
\begin{array}{ll}
\vdash_{\mathrm{E}} \varphi \oplus \psi \leftrightarrow \psi \oplus \varphi & \vdash_{\mathrm{E}} \overline{0} \oplus \varphi \leftrightarrow \varphi \\
\vdash_{\mathrm{E}} \varphi \oplus(\psi \oplus \chi) \leftrightarrow(\varphi \oplus \psi) \oplus \chi & \vdash_{\mathrm{E}} \varphi \oplus \neg \overline{0} \leftrightarrow \neg \overline{0} \\
\vdash_{\mathrm{E}} \neg(\neg \varphi \oplus \psi) \oplus \psi \leftrightarrow \neg(\neg \psi \oplus \varphi) \oplus \varphi & \vdash_{\mathrm{E}} \neg \neg \varphi \leftrightarrow \varphi
\end{array}
$$

The rule of substitution

Proposition 2.38

$$
\begin{aligned}
& \vdash_{€} \varphi \leftrightarrow \varphi \quad \varphi \leftrightarrow \psi \vdash_{\text {£ }} \psi \leftrightarrow \varphi \quad \varphi \leftrightarrow \psi, \psi \leftrightarrow \chi \vdash_{£} \varphi \leftrightarrow \chi \\
& \varphi \leftrightarrow \psi \vdash_{€}(\varphi \wedge \chi) \leftrightarrow(\psi \wedge \chi) \quad \varphi \leftrightarrow \psi \vdash_{€}(\varphi \vee \chi) \leftrightarrow(\psi \vee \chi) \\
& \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \wedge \varphi) \leftrightarrow(\chi \wedge \varphi) \quad \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \vee \varphi) \leftrightarrow(\chi \vee \psi) \\
& \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\varphi \rightarrow \chi) \leftrightarrow(\psi \rightarrow \chi) \quad \varphi \leftrightarrow \psi \vdash_{\mathrm{E}}(\chi \rightarrow \varphi) \leftrightarrow(\chi \rightarrow \psi)
\end{aligned}
$$

Corollary 2.39
$\varphi \leftrightarrow \psi \vdash_{\mathrm{E}} \chi \leftrightarrow \chi^{\prime}$, where χ^{\prime} results from χ by replacing its subformula φ by ψ.

Exercise 11 (Difficult and tedious; but can be automatized) Prove this corollary and the three previous propositions.

Linear Extensions Property

A theory T is linear if $T \vdash_{\mathrm{E}} \varphi \rightarrow \psi$ or $T \vdash_{\mathrm{E}} \psi \rightarrow \varphi$ for each φ, ψ.
Lemma 2.40 (Linear Extension Property)
If $T \vdash_{\mathrm{E}} \varphi$, then there is linear theory $T^{\prime} \supseteq T$ s.t. $T^{\prime} \not_{\mathrm{E}} \varphi$.
The proof is the same as in the case of Gödel-Dummett logic using the Semilinearity property we have proved in the previous section.

Lindenbaum-Tarski algebra

Definition 2.41

Let T be a theory. We define

$$
[\varphi]_{T}=\left\{\psi \mid T \vdash_{\underline{E}} \varphi \leftrightarrow \psi\right\} \quad L_{T}=\left\{[\varphi]_{T} \mid \varphi \in F m_{\mathcal{L}}\right\}
$$

The Lindenbaum-Tarski algebra of a theory $T\left(\boldsymbol{\operatorname { L i n d }}_{T}\right)$ as an algebra with the domain L_{T} and operations:

$$
\begin{aligned}
& \overline{0}^{\operatorname{LindT}_{T}}=[\overline{0}]_{T} \\
& \neg^{\text {LindT }_{T}}[\varphi]_{T}=[\varphi \rightarrow \overline{0}]_{T} \\
& {[\varphi]_{T} \oplus^{\operatorname{LindT}_{T}}[\psi]_{T}=[\neg \varphi \rightarrow \psi]_{T}}
\end{aligned}
$$

Lindenbaum-Tarski algebra: basic properties

Proposition 2.42

(1) $[\varphi]_{T}=\overline{1}^{\mathrm{LindT}_{T}}$ iff $T \vdash_{E} \varphi$.
(2) $[\varphi]_{T} \leq[\psi]_{T}$ iff $T \vdash_{\mathrm{E}} \varphi \rightarrow \psi$.
(3) LindT_{T} is an MV-algebra.
(1) LindT $_{T}$ is an MV-chain iff T is linear.

Proof.

The same as in the case of Gödel-Dummett logic we only use Proposition 2.37 to prove 3.

Three completeness theorems

Theorem 2.43
The following are equivalent for every theory T and a formula φ :
(1) $T \vdash_{E} \varphi$
(2) $T \models_{\mathrm{MV}} \varphi$
(3) $T \models_{M_{\text {lin }}} \varphi$
w.r.t. general semantics
w.r.t. linear semantics

If T is finite we can add:
(1) $T \models_{[0,1]_{\mathrm{I}}} \varphi$

w.r.t. standard semantics

Exercise 12 (Easy)

Prove the equivalence of the first three claims.
We give a proof of 3 . implies 4 . but first . . .

MV-algebras and LOAGs

A lattice ordered Abelian group (LOAG for short) is a structure $\langle G,+, 0,-, \leq\rangle$ s.t. $\langle G,+, 0,-\rangle$ is an Abelian group and:
(i) $\langle G, \leq\rangle$ is a lattice,
(ii) if $x \leq y$, then $x+z \leq y+z$ for all $z \in G$.

A strong unit u is an element s.t.

$$
(\forall x \in G)(\exists n \in N)(x \leq n u)
$$

For LOAG $\boldsymbol{G}=\langle G,+, 0,-, \leq\rangle$ and strong unit u we define algebra $\Gamma(\boldsymbol{G}, u)=\langle[0, u], \oplus, \neg, \overline{0}\rangle$, where $x \oplus y=\min \{u, x+y\}, \neg x=u-x, \overline{0}=0$.

By \boldsymbol{R} we denote the additive LOAG of reals.

Proposition 2.44

$\Gamma(\boldsymbol{G}, u)$ is an MV-algebra and for each $u>0$ is $\Gamma(\boldsymbol{R}, u)$ isomorphic to the standard MV-algebra $[0,1]_{\mathrm{E}}$.

Proof of std. completeness of Łukasiewicz logic

If $T \nvdash_{\mathrm{E}} \varphi$ we know that there is countable MV-chain \boldsymbol{B} s.t. $T \not \vDash_{\boldsymbol{B}} \varphi$. Let x_{1}, \ldots, x_{n} be variables occurring in $T \cup\{\varphi\}$. Then:

$$
\not \forall_{\boldsymbol{B}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in T}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

Let us define algebra $\boldsymbol{B}^{\prime}=\langle Z \times B,+,-, 0\rangle$ as:

$$
\begin{aligned}
\langle i, x\rangle+\langle j, y\rangle & = \begin{cases}\langle i+j, x \oplus y\rangle & \text { if } x \& y=0 \\
\langle i+j+1, x \& y\rangle & \text { otherwise }\end{cases} \\
-\langle i, x\rangle & =\langle-i-1, \neg x\rangle \text { and } 0=\langle 0, \overline{0}\rangle
\end{aligned}
$$

Proposition 2.45
\boldsymbol{B}^{\prime} is a $L O A G$ and $\boldsymbol{B}=\Gamma\left(\boldsymbol{B}^{\prime},\langle 1, \overline{0}\rangle\right)$.

Proof of std. completeness of Łukasiewicz logic

Let us fix an extra variable u, we define a translation of MV-terms into LOAG-terms:

$$
x^{\prime}=x \quad \overline{0}^{\prime}=0 \quad(\neg t)^{\prime}=u-t^{\prime} \quad\left(t_{1} \oplus t_{2}\right)^{\prime}=\left(t_{1}^{\prime}+t_{2}^{\prime}\right) \wedge u
$$

Recall that we have:

$$
\forall_{\boldsymbol{B}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in T}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

Thus also:
$\not \forall_{\boldsymbol{B}^{\prime}}(\forall u)\left(\forall x_{1}, \ldots, x_{n}\right)\left[(0<u) \wedge \bigwedge_{i \leq n}\left(x_{i} \leq u\right) \wedge\left(0 \leq x_{i}\right) \wedge \bigwedge_{\psi \in T}\left(\psi^{\prime} \approx \overline{1}\right) \Rightarrow\left(\varphi^{\prime} \approx \overline{1}\right)\right.$

Proof of std. completeness of Łukasiewicz logic

Gurevich-Kokorin theorem: each \forall_{1}-sentence of LOAGs is true in additive LOAG of reals iff it is true in all linearly ordered LOAGs.
Thus
$\not \forall_{\boldsymbol{R}}(\forall u)\left(\forall x_{1}, \ldots, x_{n}\right)\left[(0<u) \wedge \bigwedge_{i \leq n}\left(x_{i} \leq u\right) \wedge\left(0 \leq x_{i}\right) \wedge \bigwedge_{\psi \in T}\left(\psi^{\prime} \approx \overline{1}\right) \Rightarrow\left(\varphi^{\prime} \approx \overline{1}\right)\right]$
And so

$$
\forall_{\Gamma(\boldsymbol{R}, u)}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in T}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

And so

$$
\not \forall_{[0,1]_{\mathrm{E}}}\left(\forall x_{1}, \ldots, x_{n}\right) \bigwedge_{\psi \in T}(\psi \approx \overline{1}) \Rightarrow(\varphi \approx \overline{1})
$$

i.e., $T \not \vDash_{[0,1]_{\mathrm{E}}} \varphi$

What is a logic? (as a mathematical object) (and for us here)

Convention

A logic is a provability relation on formulae in a language $\mathcal{L} \supseteq\{\rightarrow, \vee, \overline{1}\}$ axiomatized by axioms axioms $\mathcal{A} x$ and rules $\mathcal{R} u$ s.t.

- $\vdash_{\mathrm{L}} \varphi \rightarrow \varphi$

$$
\begin{aligned}
& \varphi, \varphi \rightarrow \psi \vdash_{\mathrm{L}} \\
& \overline{1} \rightarrow \varphi \vdash_{\mathrm{L}} \varphi
\end{aligned}
$$

- $\varphi \vdash_{\mathrm{L}} \overline{1} \rightarrow \varphi \quad \overline{1} \rightarrow \varphi \vdash_{\mathrm{L}} \varphi$
- $\vdash_{\mathrm{L}} \varphi \rightarrow \varphi \vee \psi \quad \vdash_{\mathrm{L}} \psi \rightarrow \varphi \vee \psi \quad \varphi \rightarrow \chi, \psi \rightarrow \chi \vdash_{\mathrm{L}} \varphi \vee \psi \rightarrow \chi$
- for each n-ary connective $c \in \mathcal{L}, \mathcal{L}$-formulae $\varphi, \psi, \chi_{1}, \ldots, \chi_{n}$, and each $i<n$ the following holds:

$$
\varphi \rightarrow \psi, \psi \rightarrow \varphi \vdash_{\mathrm{L}} c\left(\chi_{1}, \ldots, \chi_{i}, \varphi, \ldots, \chi_{n}\right) \leftrightarrow c\left(\chi_{1}, \ldots, \chi_{i}, \psi, \ldots, \chi_{n}\right)
$$

- each of the rules has only finitely many premises

We fix a logic L in language \mathcal{L} with axioms $\mathcal{A} x$ and rules $\mathcal{R} u$.

Semantical consequence w.r.t. a class of G-algebras

Definition 2.46

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{0})=\overline{0}^{\boldsymbol{B}}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \wedge \psi)=e(\varphi) \wedge^{\boldsymbol{B}} e(\psi)$

Definition 2.47

A formula φ is a logical consequence of a theory T
w.r.t. a class \mathbb{K} of G-algebras, $T=_{\mathbb{K}} \varphi$,
if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma)=\overline{1}^{B} \text { for every } \gamma \in T \text {, then } e(\varphi)=\overline{1}^{B} .
$$

Semantical consequence w.r.t. a class of \mathcal{L}-algebras

Definition 2.48

A \boldsymbol{B}-evaluation is a mapping e from $F m_{\mathcal{L}}$ to B such that:

- $e(\overline{1})=\overline{1}^{\boldsymbol{B}}$
- $e(\varphi \vee \psi)=e(\varphi) \vee^{\boldsymbol{B}} e(\psi)$
- $e(\varphi \rightarrow \psi)=e(\varphi) \rightarrow^{\boldsymbol{B}} e(\psi)$
- $e\left(c\left(\chi_{1}, \ldots, \chi_{n}\right)\right)=c^{\boldsymbol{B}}\left(e\left(\chi_{1}\right), \ldots, e\left(\chi_{n}\right)\right)$ for each n-ary $c \in \mathcal{L}$

Definition 2.49

A formula φ is a logical consequence of a theory T
w.r.t. a class \mathbb{K} of \mathcal{L}-algebras, $T \models_{\mathbb{K}} \varphi$, if for every $\boldsymbol{B} \in \mathbb{K}$ and every \boldsymbol{B}-evaluation e :

$$
\text { if } e(\gamma) \vee^{B} \overline{1}^{B}=e(\gamma) \text { for every } \gamma \in T \text {, then } e(\varphi) \vee^{B} \overline{1}^{B}=e(\varphi) \text {. }
$$

Algebraic semantics and semilinear logic

For each L there is a class \mathbb{L} of L -algebras st. for every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{L}} \varphi \text { if, and only if, } T \models_{\mathbb{L}} \varphi .
$$

Each L-algebra A can be ordered:

$$
x \leq_{A} y \quad \text { IFF } \quad x \vee^{A} y=y \quad \text { IFF } \quad \overline{1}^{A} \leq x \rightarrow^{A} y
$$

Let us by $\mathbb{L}_{\text {lin }}$ of L-algebras which are linearly ordered

Definition 2.50

We say that a logic L is semilinear if for every theory T and a formula φ we have:

$$
T \vdash_{\mathrm{L}} \varphi \text { if, and only if, } T \models_{\mathbb{L}_{\text {lin }}} \varphi .
$$

Syntactical characterization of semilinearity

Theorem 2.51 (Syntactical characterization)
Let L be axiomatized by axioms $A x$ and rules $\mathcal{R} u$. TFAE:
(1) L is a semilinear logic
(2) If $T \nvdash \mathrm{~L} \varphi$ then there is a linear theory $S \supseteq T$ s.t. $S \nvdash_{\mathrm{L}} \varphi$
(3) For every set of formulae $T \cup\{\varphi, \psi, \chi\}$:

$$
T, \varphi \rightarrow \psi \vdash_{\mathrm{L}} \chi \quad \text { and } \quad T, \psi \rightarrow \varphi \vdash_{\mathrm{L}} \chi \quad \text { imply } \quad T \vdash_{\mathrm{L}} \chi .
$$

(9) $\vdash_{\mathrm{L}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$ and for every set of formulae $T \cup\{\varphi, \psi, \chi\}$:

$$
T, \varphi \vdash_{\mathrm{L}} \chi \text { and } T, \psi \vdash_{\mathrm{L}} \chi \text { imply } T, \varphi \vee \psi \vdash_{\mathrm{L} \chi} \chi .
$$

(0) $\vdash_{\mathrm{L}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$ and if $T \vdash_{\mathrm{L}} \varphi$, then $T \vee \chi \vdash_{\mathrm{L}} \varphi \vee \chi$ for all χs
(0. $\vdash_{\mathrm{L}}(\varphi \rightarrow \psi) \vee(\psi \rightarrow \varphi)$ and if $T \vdash \varphi \in \mathcal{R} u$, then

$$
T \vee \chi \vdash_{\mathrm{L}} \varphi \vee \chi \text { for all } \chi s
$$

Semantical characterization of semilinearity

Theorem 2.52 (Semantic characterization)
Let L be a logic. TFAE:
(1) L is a semilinear logic
(2) the finitely relatively subdirectly irreducible L-algebras are exactly the L-chains
(3) the relatively subdirectly irreducible L-algebras are linearly ordered

The moral of the story ...

(-) fuzzy logics are not so different from the classical logic, they have

- Hilbert style axiomatizations
(and even analytic proof system based on the hypersequents)
- semantics based on real numbers or (linearly) ordered algebras
- a completeness theorem linking those two facets
- usually a co-NP-complete set of theorems (e.g. Łukasiewicz or G)
(2) but there are funny things going on:
- deduction theorem could fail
- compactness and finitarity are two different notions
(3) numerous different fuzzy logics can be designed playing with the axiomatization or the semantics

If you want to know more ...

P. Cintula, P. Hájek, C. Noguera (editors). Vol. 37 and 38 of Studies in Logic: Math. Logic and Foundations. College Publications, 2011.

