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My plan

@ formally present two prominent fuzzy logics:

» GoOdel-Dummett logic
» tukasiewicz logic

and to do so in two different ways:

» using (almost classical) Hilbert style axiomatization
» using (highly non-classical, yet surprisingly ‘natural’) semantics

@ give a (hint of a) proof of the completeness theorem (the equality
of these two ways)

» for the G6del-Dummett logic and
» show why the same proof would not work for Lukasiewicz logic and
how to overcome this problem

© show that the same proof would work in a much more general
setting for an arbitrary logic satisfying certain minimal conditions
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The basic syntax: no change there

We consider primitive connectives £ = {0, A, v, —} and defined
connectives —, 1, and <

~p=¢—0 1=-0 o =(p—=Y)A W)

Formulae are built from a fixed countable set of atoms using the
connectives.

Let us by Fm . denote the set of all formulae.
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Recall the semantics of classical logic

Definition 2.1
A 2-evaluation is a mapping e from Fm, to {0, 1}; s.t.
0 ¢(0)=0"=0
® e(p A1) = e(p) N e(3h) = min{e(p), e(¥)}
0 e(p V) = e(p) V2 e(¢h) = max{e(p), e(¥)}
o cly s u)=ele) P e) ={ o )=
Definition 2.2

A formula ¢ is a logical consequence of a theory T
(in classical logic), T 3 o, if for every 2-evaluation e:

if e(y) =1 forevery v € T, then e(p) = 1.
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Recall the semantics of classical logic

Definition 2.1
A 2-evaluation is a mapping e from Fm, to {0, 1}; s.t.:

0 ¢(0)=0"=0

® e(p AY) = e(p) A e(4h) = min{e(p), e(y)}

0 e(p V1) = e(p) V2 e(vh) = max{e(p), e(v)}

© elo ) =elp) Hew) = { y ) o) = e
Definition 2.2

A formula ¢ is a logical consequence of a theory T
(in classical logic), T 3 o, if for every 2-evaluation e:

if e(y) =1 forevery v € T, then e(p) = 1.
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Changing the semantics

Definition 2.3
A [0, I]g-evaluation is a mapping e from Fm to [0, 1]; s.t.:
e(0) =0 =0
E(w A1) = e(p) AP!lo e(y) = min{e(p), e(y)}
@ (o V1) = e(p) VIlle () = max{e(¢), e(v)}
© el ) =elp) WMo e() = { 1 1A= V)

Definition 2.4

A formula ¢ is a logical consequence of a theory T
(in Godel-Dummett logic), T = 1), ¢ if for every [0, 1]g-evaluation e:

if e(y) = 1 for every v € T, then e(p) = 1.
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Changing the semantics

Some classical properties fail in =g

0%[0,1}(;_!_!(70_)%0 —|—|%—)§:1_>%:%
® s Ve ly-l-1
® Fpig "(Ce A W) S VY (3 Ag) g Va =15 =5

@ o1 ((p =) =) = (v = ¢) = ¢)
(3—=0—20—=((0=>3)—=3=1=1=1
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Recall a proof system for classical logic

The axioms are:

(A1) (p=9Y) = (¥ —=x) = (¢ —=x)

2) =W =)

) (=W —=x) = @ —=(p—=x)
(=) V(=)

) A=

) A=

) (x—= @)= (X =)= (X = eAY))

) ¢ VY

) Y=oV

) (p—=x) = (¥ —=x) = (VY —x)
0—¢
(= (=) = (¢ =)

A9 ((p—=) =) = (¥ = v) = ¢)

The only inference rule is modus ponens: from ¢ — 1) and ¢ infer .

(A
(A
(A4
(
(
(
(
(
(
(A7
(A8

We write T k¢ ¢ if there is a proof of ¢ from T in classical logic.
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A proof system for Gédel-Dummett logic

The axioms are:

(A1) (p=9Y) = (¥ —=x) = (¢ —=x)
(A2) o= (Y —9)

(A ) (=W —=x) = @ —=(p—=x)
(Ad)  (p—= )V (P =)

(ASa) pAY =

(ASb) AP =

(ASc) (x = @) = ((x = ¥) = (x = pAY))
(ABa) ¢ — oV

(ABb) =V

(ABc)  (p—x) = (¥ —=x) = (V= X))
(A7) 00—

(A8)  (p— (=) = (p— 1)

The only inference rule is modus ponens: from ¢ — 1) and ¢ infer .

We write T k¢ ¢ if there is a proof of ¢ from T in Gédel-Dummett logic.
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Completeness theorem for classical logic

Theorem 2.5
For every theory T and a formula ¢ we have:

T ke g if, and only if, T =5 .
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Completeness theorem for Gédel-Dummett logic

Theorem 2.6
For every theory T and a formula o we have:

T b @ if, and only if, T = 11, -
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Recall a proof system for classical logic

The axioms are:

(A1)

(A9)

The only inference rule is modus ponens: from ¢ — v and ¢ infer .

(o= 9¢) = (¥ —=x) = (¢ = X))
o= (=)

(=W —=x) =@ —=(p—=X)

(p =)V — o)

CAY =

OANY =

x—=9) = (x—=v) = (x = eAY))
o=V

Y=oV

(p=x) = (¥ —=x) = (VY —=X)
00—

(o= (=) = (p =)

(o =) =) = (¥ = p) = p)
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A proof system for Gédel-Dummett logic

The axioms are:
(A1) (p—=) = (b= x) = (¢ = X))
(A2) ¢ —= (Y=
(A3) (¢ = (W —=x) = ¥ —(¢—x))
(Ad) (o= )V (=)
(ABa) AP —
(ASb) @AY —
(A5c) (x = @) = (x =) = (x = ¢ AY))
(ABa) ¢ — oV
(ABb) ¢ = oV
(A6c) (p—x) = (¥ = x) = (eVY— X))
(A7) 0—=o
(A8)  (p— (=) = (p— 1)

The only inference rule is modus ponens: from ¢ — v and ¢ infer ).
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Relation to intuitionistic logic

The intuitionistic logic has axioms:
(A1) (p—=v) = (W = x) = (¢ = X))
(A2) o= (¥ =)
(A3) (p—= W —=x)—= W= (p—X)

(ASa) oA —p
(ASb) @AY — )
(A5¢c) (x = @) = ((x = ¥) = (x = ¢ AY))
(ABa) ¢ — VY
(ABb) ¢ — VY
(ABC) (¢ —=x) = (¥ —=x) = (V= X))
(A7) 00—

(A8) (= (p =) = (v =)

The only inference rule is modus ponens: from ¢ — v and ¢ infer .
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Algebraic semantics
A Heyting-algebra is a structure B = (B, \B VB, —>B,63,TB) such that:

(1) (B,AB VB 68, TB> is a bounded lattice,
Q) z<x-=ByiffxABz<y, (residuation)

where x < y is defined as x A y = x or (equivalently) as x — y = 1.

We say that B is

@ Godel algebra (or just G-algebra) whenever

x=yVii—ox)=1 (prelinearity)
@ linearly ordered (or Heyting chain) if < is a total order.

Note that each Heyting chain is G-algebra, so we also call it G-chain.
By G (or Gy, resp.) we denote the class of all G-algebras (G-chains resp.)
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Standard semantics

Consider algebra [0, 1]g = ([0, 1], ALYs v0le 0:1e 0, 1), where:

a A% p = min{a, b}
a Vvl b = max{a, b}

[0,1]g _ 1 ifa S b,
a— b { b otherwise.

Exercise 1 (Easy)

Prove that [0, 1] is the unique G-chain with the lattice reduct
([0, 1], min, max, 0, 1).
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Recall the notion of [0, 1]g-evaluation

Definition 2.7
A [0, 1]g-evaluation is a mapping e from Fm, to [0, 1]; s.t.:

0 ¢(0)=0"" =0

@ (¢ A1) = e(p) Ao e(y) = min{e(), e(y)}

@ (¢ Vi) = e(p) VIPlla e(y) = max{e(w), e(y)}

@ e(p — ) = e(p) 200 e(y) = J
Definition 2.8

A formula ¢ is a logical consequence of set of a theory T
in Godel-Dummett logic, T = 1), s
if for every [0, 1]g-evaluation e:

if e(y) = 1forevery v € T, then e(p) = 1.
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General notion of semantical consequence

Definition 2.9
A B-evaluation is a mapping e from Fm to B such that:
0 c(0)=0"
@ e(p A1) = e() A¥ e(t))
® e(pV ) =e(p) VEe(y)
0 e(p = 9) = e(p) = e(¥)

Definition 2.10

A formula ¢ is a logical consequence of a theory T
w.r.t. a class K of G-algebras, T =k ¢,
if for every B € K and every B-evaluation e:

if e(v) = 1" for every v € T, then e(p) = 1"
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Three completeness theorems

Theorem 2.11
The following are equivalent for every theory T and a formula o:
QThHgo

Q@ TEgo w.r.t. general semantics
Q Thkg, ¢ w.r.t. linear semantics
QO Tl ¢ w.r.t. standard semantics

v

Exercise 2 (Medium)
Prove the implications from top to bottom.
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Some theorems and derivations in G

Proposition 2.12

(T1) Fce—=o

(T2) Fae—= (Y= 0AY) B

(D1) o+ 1bkgepandptg o+ 1

D2) o—Yrcenppandp Ay < ok — 9

D3) o= W —=>x)Fcpry—=xandoAd = xkc e — (Y — X)

v

Proposition 2.13

Fe e AYp < YA Fep VY <V

Fe o AN[WAX) < (@AY)AXx  FeeV (VX)) < (pVY)Vx
Fe oA (V) & o b oV (pAY) ¢ o
FG1Ap << @ FGOVp <@

Fe (=) V(=) 1
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The rule of substitution

Proposition 2.14

Few <o poYEgyY < PP, Y& X e x
ool (eAx) < (W AX) e P (VX)) < @VX)
e Ple (XA@) « (XAp) e e (X V)« (X VYY)
peovlep=2x) e @W—=x) eevlcx—0) o =)

Corollary 2.15

e g x < X', where x' results from x by replacing
its subformula ¢ by 1.

Exercise 3 (Difficult and tedious; but can be automatized)
Prove this corollary and the three previous propositions.
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Lindenbaum-—Tarski algebra

Definition 2.16
Let T be a theory. We define

[elr ={Y|Trc ¢ v}  Lr={l¢lr| ¢ € Fm.}

The Lindenbaum—Tarski algebra of a theory T (LindT7) as an algebra
with the domain Ly and operations:

6LindTT _ [6]]‘

[plr =TT [y]r = [0 — )7
o] VHTT )7 = [ V )7
[o]r AMRTT [g] = [0 A7

Exercise 4 (Easy)
Prove that the definition of LindT7 is sound.

Petr Cintula (ICS CAS) Mathematical Aspects of Many-Valued Logics 24/68



Lindenbaum-—Tarski algebra: basic properties

Proposition 2.17

Q [y =T1"""iff T g .
Q [¢lr < [Y|r iff TG o — 1.
© LindT7 is a G-algebra.

Proof.

1. [o]r = [1]7 iff T kg ¢ < 1iff (by (D1)) T g .

2. [plr < [Plr iff [plr A [Ylr = [@lr iff [p AYlr = [plr ff TEG o A < @
iff (by (D2)) T Fg ¢ — 1.

3. The validity of identities follows from Proposition 2.13 and the
residuation from (D3): [¢]r < [¢]r — [X]r iff TF ¢ — (¢ — x) iff

Tt o Ay — x iff [or A [$lr < [X]r-
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Lindenbaum—Tarski algebras

Proposition 2.18

For each theory T there is a G-algebra LindT7 (called the Linden-
baum-Tarski algebra of the theory T) and an LindTr-evaluation ey st

Q () =T""iff T y.

@ LindT7 is a G-chain iff T g ¢ — x or T =g x —  for each 1, x.

Atheory T is linearif T kg ¢ — ¢ or T kg ¢ — ¢ for each ¢, v.

Exercise 5 (Easy)
Prove it. J
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The proof of the first (general) completeness

Theorem 2.19
For every theory T and a formula ¢ we have:

T g pif,andonly if, T =g .

Proof.
Assume that T /g ¢

Take the G-algebra LindT7

Take the LindT;-evaluation er, recall that er(x) = T

Clearly er(¢) # 1" and

iff THy

er(x) = 1" for each x € T (because T I y) n
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The proof of the second (linear) completeness

Theorem 2.20
For every theory T and a formula ¢ we have:

T kg ¢ if,and only if, T |=g,, ¢

Proof.
Assume that T tg ¢ and that there is linear S O T st. S t/g ¢

Take the G-algebra LindTg, we know that it is a G-chain

Take the LindTs-evaluation e, recall that es(x) = Lind T/

Clearly es(y) £ 17" and

iff S F x

es(x) = 1" for each x € T (because S g x) 0
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Linear Extension Property

Atheory Tis linearif T g ¢ — ¢ or T =g v — ¢ for each ¢, 1.

Lemma 2.21 (Linear Extension Property)
If T ¥ ¢, then there is linear theory S O T s.t. S ¥ .

Proof.
Assume that T 4 ¢

Take a maximal S O T s.t. S ¥ ¢ (it exists due to the Zorn’s lemma)

Assume that S is not linear, i.e., there are formulae ), x
st.SHFL Y — yand S¥FL x —

Then, due to the maximality of S: S;¢ — xy kL pand S,y — ¢ L ¢

If we would know that this implies: S . ¢, we have a
contradiction! O
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Semilinearity Property

Lemma 2.22 (Semilinearity Property)
If T,%) — xtceand T,x — g @, then T g .

Proof.
If we would know that G has the deduction theorem:

Tt (W= x) 2 pand Thkg (x = ¢¥) = ¢
Thus by axiom (A6¢c) T kg (¥ — x) V (x = ¢¥) = ¢
Then axiom (A4) completes the proof. O
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Deduction Theorem

Theorem 2.23 (Deduction theorem)
For every set of formulae T U {p, v},

T,QDI—Gwifle—GsD—>¢

Exercise 6 (Medium)
Prove it.
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The proof of the third (standard) completeness

Contrapositively: assume that T t/; . Let B be a countable G-chain’
and e a B-evaluation such that e[T] C {TB} and e(y) # T

There has to be (because every countable order can be monotonously
embedded into a dense one) a mapping f: B — [0, 1] such that
f(0) =0, f(1) = 1, and for each a,b € B we have:

a<b iff f(a)<f(a)

We define a mapping e: Fm,. — [0, 1] as

and prove (by induction) that it is [0, 1]g-evaluation.

Then &(4) = 1 iff e(e) = T° and so e[T] C {1} and &(¢) # 1.

'E.g. B = LindT;~ for some linear T’ D T st. T’ ¥ .
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We still keep the classical syntax

We consider primitive connectives £ = {0, A, v, —} and defined
connectives —, 1, and «:
~p=¢—0 1=-0 po=(@=>Y)AQ =)

Formulae are built from a fixed countable set of atoms using the
connectives.

Let us by Fm . denote the set of all formulae.
But we also use additional connectives & and & defined as:

eOY=mp—=1 & =-(p— )
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Recall the semantics of Gédel-Dummett logic

Definition 2.24
A [0, I]g-evaluation is a mapping e from Fm to [0, 1]; s.t.:
e(0) =0 =0
e(cp A ) = e(p) A6 e(y) = min{e(p), e()}
® ¢(p V) = e(p) VI?llo e(y) = max{e(), e(v)}
o el ) =elp) WMo e() = { L 1o < D)

e(y) otherwise.

Definition 2.25

A formula ¢ is a logical consequence of a theory T
(in Godel-Dummett logic), T = 1), ¢ if for every [0, 1]g-evaluation e:

if e(y) = 1 for every v € T, then e(p) = 1.
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Changing the semantics (again)

Definition 2.26
A [0, 1],-evaluation is a mapping e from Fm, to [0, 1]; s.t.:

e ¢(0)=0"" =0

@ e(p A ) = e(p) AU e(yp) = min{e(p), e(4h)}

0 e(p V) = e(p) VIO e(y)) = max{e(), e(1)}

@ e(p — ) = e(p) =101 o(y) = { i—e(@)—i—e(d)) i)ftlfe(:fv\)/lsge )

Definition 2.27

A formula ¢ is a logical consequence of a theory T
(in tukasiewicz logic), T =1}, . if for every [0, 1]y -evaluation e:

if e(y) = 1 for every v € T, then e(p) = 1.
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Changing the semantics (again)

Some classical properties fail in |= [0, 1]:
@ Fp, vV
® Fpp (v = (0 =) = (0 = ¥)

BUT other classical properties hold, e.g.:
@ Epi TP
@ ., ((p =) =) = (¥ = ¢) = ¢)

@ all De Morgan laws involving —, v, A
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Recall a proof system for classical logic

The axioms are:

(A1) (p=7Y) = (¥ —=x) = (= X))
2) =W =)
3 (p=W—=x)—=>@W—=(p—=x)

(A

(A

(Ad)  (p—= )V (P =)

(ASa) pAY =

(A5b) AP =

(A5¢c) (x = @) = ((x = ¥) = (x > ¢ AY))
(ABa) ¢ — oV

(ABb) Y — Vv

EAG) (p—=x) = (P —=x) = (VY —=x)
(A

C

A7) 0—¢p
8) (p—= (=)= (p—1)

A9 ((p—=) =) = (¥ —v) =)

The only inference rule is modus ponens: from ¢ — 1) and ¢ infer .

We write T k¢ ¢ if there is a proof of ¢ from T in classical logic.
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Recall a proof system for Gédel-Dummett logic

The axioms are:

(A1) (p=9Y) = (¥ —=x) = (¢ —=x)
(A2) o= (Y —9)

(A ) (=W —=x) = @ —=(p—=x)
(Ad)  (p—= )V (P =)

(ASa) pAY =

(ASb) AP =

(ASc) (x = @) = ((x = ¥) = (x = pAY))
(ABa) ¢ — oV

(ABb) =V

(ABc)  (p—x) = (¥ —=x) = (V= X))
(A7) 00—

(A8)  (p— (=) = (p— 1)

The only inference rule is modus ponens: from ¢ — 1) and ¢ infer .

We write T k¢ ¢ if there is a proof of ¢ from T in Gédel-Dummett logic.
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A proof system for tukasiewicz logic

The axioms are:

(A1) (p=7Y) = (¥ —=x) = (= X))
2) =W =)
3 (p=W—=x)—=>@W—=(p—=x)

(A

(A

(Ad)  (p—= )V (P =)

(ASa) pAY =

(A5b) AP =

(A5¢c) (x = @) = ((x = ¥) = (x > ¢ AY))
(ABa) ¢ — oV

(ABb) Y — Vv

(ABc) (v —=x) = (¥ = x) = (pVY = X))
(A7) 00—

(A9)  ((p =) =) = (W =) > 9)
The only inference rule is modus ponens: from ¢ — 1) and ¢ infer .

We write T Fy, ¢ if there is a proof of ¢ from T in Lukasiewicz logic.
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Completeness theorem for Lukasiewicz logic

Theorem 2.28
For every finite theory T and a formula ¢ we have:

T by @ if, and only if, T =1, -

Exercise 7 (Easy)
Prove the implication from left to right.
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Finitarity vs. compactness of =, and i,
Proposition 2.29

Q .1}, is compact i.e., if each finite T' C T there is
an [0, 1]y, - evaluation e st. e[T'] C {1}, then there is
an [0, 1], -evaluation e st. e[T] C {1}

Q =1}, is not finitary i.e., there is T U {¢} s.t. T =g 1),  but for no
finite T' C T we have T' = 1}, ¢

© Gy is finitary

@ a®b=min{a+b,1} PRY =29 =Y
eXx={(pe.".®dp) —q|n>1}U{-p—q}
® X g
@ For every finite 3y C %3, 3 bé[(mb q.

Thus we cannot have the strong completeness theorem -, = = 1),
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A problem for the completeness proof

The ‘normal’ deduction theorem fails in L:

Proof.

Clearly ¢, p — (¢ — ) kg, ¢ (by using modus ponens twice)
But then by DT twice also 1, (¢ — (¢ = ¢)) = (¢ — )

And so by soundness also: =), (¢ = (¢ = ¥)) = (¢ = P) ...
... which we know is not true. Ol

We can only prove a local deduction theorem:

Theorem 2.30
For every theory T and formulae ¢ and 1) we have:

T,p by, o iff thereisn > 1suchthat Tty p & .". & o —
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How do we get the Semilinearity Property?

Assume that we would be able to prove:

Theorem 2.31 (Proof by Cases Property)

IfT,% by, pand T, x by, o, then T,y V x by, . J

Then the Semilinearity Property easily follows using axiom (A4)
W—=x)Vx—=9).

Lemma 2.32 (Semilinearity Property)

IfT,v — xtFp pandT,x — ¥ kg, o, thenT kg, . J
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A proof of the Proof by Cases Property

Exercise 8 (Medium)
(P1) ke oVe—o
Prove that (P2) i oV =¥V
(P3) oVx,(¢—=9¥)VxFeyVx

Assume: Tyt pand T, x kg ¢
Assume that we know that: if Thy o, then{ Vx| eT}ky oV x
Then: TV, oVxkreVvyxand TV, xVely oVoe.
Using (A6a), (P1), and (P2)we get T,v) vV x Fr. x Vo and T, x V ¢ by,

Thus obviously: T,y VxtrLe
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A proof of the Proof by Cases Property

Exercise 8 (Medium)
(P1) ke oVe—o
Prove that (P2) i oV =¥V
(P3) oVx,(¢—=9¥)VxFeyVx

So we need to show that: ifTHe p,then{y Vx| eT} oVyx

We prove more: If Tk, o, then TV x b1, 6V x
for each § appearing in the proof of ¢ from T.

It is trivial for 6 € T or § an axiom

if we used MP, by IH there has to be 7 st.

TVx by, nVx TVx k1 (n — 6)Vx thus (P3) completes the proof.
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Algebraic semantics

An MV-algebra is a structure B = (B, ®, -, 0) such that:
(1) (B,®,0) is a commutative monoid,
(2) w=ux
3) x@®-0=-0,

@4 —(xdy)dy=-(ydx) dx

In each MV-algebra we define additional operations:

x—y is —xPy implication
x&y is o(-x®-y) strong conjunction
xAy is x&(x—y) min-conjunction
xVy is —(—xA-y) max-disjunction

1 is =0 top

Exercise 9 (Easy)
Prove that (B, A, V,0, 1) is a bounded lattice.
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Algebraic semantics cont. and standard semantics

We say that an MV-algebra B is linearly ordered (or MV-chain) if its
lattice reduct is.

By MV (or MVy;, resp.) we denote the class of all MV-algebras
(MV-chains resp.)

Take the algebra [0, 1]z, = ([0, 1], &, —, 0), with operations defined as:
—a=1-a a®b=min{l,a+ b}.
Proposition 2.33

[0, 1]3, is the unique (up to isomorphism) MV -chain with the lattice
reduct ([0, 1], min, max, 0, 1).

Exercise 10 (Easy)

Check that [0, 1]z, is an MV-chain and find another MV-chain
isomorphic to [0, 1]z, with the same lattice reduct.
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General notion of semantical consequence

Definition 2.34
A B-evaluation is a mapping e from Fm to B such that:

Oe(ﬁ) 6

@ e(p — ) = e(p) —>B€(¢)= e(p) &F e(y)
® e(pAY) = e(p) ABe(y )—

@ e(p V) =e(p) VBe(y) =

Definition 2.35

A formula ¢ is a logical consequence of a theory T
w.r.t. a class K of MV-algebras, T =k ¢,

if for every B € K and every B-evaluation e:

if e(v) = 1" for every v € T, then e(p) = 1"
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Some theorems and derivations of £

Proposition 2.36

(T1) FLe—o

(T2) Fro—= W= pAY) 3

(D1) o1k pandpby o <1

D2) o—yYrLoApcpandpAy < by o — 9

Proposition 2.37

FLe@Y YDy FL0®pop
FLp @ (WO x) & (p@Y) DX Fe, o @ —0 <> —0
Fo (o @Y) @Y < (YD) B o Fr, " < @
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The rule of substitution

Proposition 2.38

P o < @ oYL e R R A R Y
ey (PAX) & (W AX) YL (V) < @VX)
e Py (XAQ) & (XA Q) by (X V)« (X V)
pevhn(p=x)e@—ox) vl —e) e =)

Corollary 2.39

oYy x < X/,  where X' results from x by replacing
its subformula o by 1.

Exercise 11 (Difficult and tedious; but can be automatized)
Prove this corollary and the three previous propositions.
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Linear Extensions Property

Atheory T is linear if T kg, ¢ — ¢ or T bk, ¢ — ¢ for each ¢, 1.

Lemma 2.40 (Linear Extension Property)
If T ¥y, @, then there is linear theory T' O T s.t. T' ¥y, . J

The proof is the same as in the case of Gédel-Dummett logic using
the Semilinearity property we have proved in the previous section.
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Lindenbaum-—Tarski algebra

Definition 2.41
Let T be a theory. We define

[elr ={Y | TrLp < v}  Lr={lplr| ¢ € Fm,}

The Lindenbaum—Tarski algebra of a theory T (LindT7) as an algebra
with the domain Ly and operations:

GLiDdTT _ [6]]‘

LT[l = [p — Ol

ol &M [Y]r = [~ — Ylr )
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Lindenbaum—Tarski algebra: basic properties

Proposition 2.42

o [SO]T LdeT iff T Fr, ©.

Q [plr<[Wlriff Tk o — .

© LindT7 is an MV -algebra.

© LindT7 is an MV-chain iff T is linear.

Proof.

The same as in the case of Gédel-Dummett logic we only use
Proposition 2.37 to prove 3. O
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Three completeness theorems

Theorem 2.43

The following are equivalent for every theory T and a formula ¢ :
QThyo

QO Thkmvy w.r.t. general semantics
Q T kEmy, ¢ w.r.t. linear semantics

If T is finite we can add:

QO T, v w.r.t. standard semantics

v

Exercise 12 (Easy)
Prove the equivalence of the first three claims.

We give a proof of 3. implies 4. but first . ..
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MV-algebras and LOAGs

A lattice ordered Abelian group (LOAG for short) is a structure
(G,+,0,—,<) s.t. (G,+,0,—) is an Abelian group and:

(i) (G,<) is a lattice,
(i) ifx<y, thenx+z<y+zforallze€G.

A strong unit u is an element s.t.

(Vx € G)(3n € N)(x < nu)

For LOAG G = (G, +,0, —, <) and strong unit u we define algebra
I'G,u) = ([0,u],®,—,0), where x &y = min{u,x+ y}, wx=u—x,0=0.

By R we denote the additive LOAG of reals.
Proposition 2.44

I'(G,u) is an MV -algebra and for each u > 0 is I'(R, u) isomorphic to
the standard MV -algebra [0, 1]y,.
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Proof of std. completeness of Lukasiewicz logic

If T t/1, ¢ we know that there is countable MV-chain B s.t. T (~p ¢. Let
x1,...,X, be variables occurring in T U {¢}. Then:

Ep (Vx1,.x) \ (W rT) = (o~ 1)
YeT

Let us define algebra B’ = (Z x B, +, —,0) as:

(i+j,xDy) ifx&y=0
(i+j+ 1,x&y) otherwise

<i,X>+(i,y>={

—(i,x) = (=i — 1,—x) and 0 = (0,0)
Proposition 2.45
B isaLOAG andB =T(B',(1,0)). J
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Proof of std. completeness of Lukasiewicz logic

Let us fix an extra variable u, we define a translation of MV-terms into
LOAG-terms:

/ ~4

¥Y=x 0=0 (-t)=u-t (hon) =0+ u

Recall that we have:

g (Vx1, ..., x,) /\(@sz) = (p=1),

Thus also:

g (Vi) (Var, -, x)[(0 < i)A N\ (i S wAO < x)n \ (0 = 1) = (¢ = 1)

i<n PeT

Petr Cintula (ICS CAS) Mathematical Aspects of Many-Valued Logics 58/ 68



Proof of std. completeness of Lukasiewicz logic

Gurevich—Kokorin theorem: each V;-sentence of LOAGs is true in
additive LOAG of reals iff it is true in all linearly ordered LOAGs.
Thus

Fr (Fu)(Vx1, ) [(0 < i)A \ (i < i)AO < x)n \ (' = T) = (¢ = 1))

i<n YeT
And so B B
Er®a (Vx5 x) /\ (Wr1)=(p=1)
»eT
And so ~ B
%[O,I]L (VXl, s 7xn) /\ (¢ ~ 1) = (QO ~ 1)
YET
i.e., T F’é[O,l]L )
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What is a logic? (as a mathematical object) (and for us here)

Convention
A logic is a provability relation on formulae in a language £ 2 {—, Vv, 1}
axiomatized by axioms axioms Ax and rules Ru s.t.
Lo —op o, p=>LY o2 o xFLe = X
ngI—LT—Mp T—)gpl—ch
L= VY FLY = eVY o= x, 0= xFLeVy —x
@ for each n-ary connective ¢ € £, L-formulae ¢, ¥, x1, - .., xn, and
each i < n the following holds:

SO_>w71/}_>SOFLC(XIWNJXIHSOW";XH)HC(X17"'7Xi7¢7"'7Xn)

@ each of the rules has only finitely many premises

We fix a logic L in language £ with axioms Ax and rules Ru.
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Semantical consequence w.r.t. a class of G-algebras

Definition 2.46
A B-evaluation is a mapping e from Fm to B such that:

Definition 2.47

A formula ¢ is a logical consequence of a theory T
w.r.t. a class K of G-algebras, T =k ¢,
if for every B € K and every B-evaluation e:

if () = 1" for every v € T, then e(p) = 1".
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Semantical consequence w.r.t. a class of £-algebras

Definition 2.48
A B-evaluation is a mapping e from Fm to B such that:

=cB(e(x1),...,e(xn)) foreach n-ary c € £

Definition 2.49

A formula ¢ is a logical consequence of a theory T
w.r.t. a class K of £-algebras, T =k ¢,
if for every B € K and every B-evaluation e:

if e(y) VB T = e(v) for every v € T, then e(yp) VB T = e(p).
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Algebraic semantics and semilinear logic

For each L there is a class L of L-algebras st. for every theory T and a
formula ¢ we have:

Tk pif,andonly if, T =1, .
Each L-algebra A can be ordered:
x<say IFF xVAy=y IFF ™ <x—ty

Let us by Ly, of L-algebras which are linearly ordered

Definition 2.50

We say that a logic L is semilinear if for every theory T and a formula ¢
we have:

Thy gif,andonly if, T =1, ¢.
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Syntactical characterization of semilinearity

Theorem 2.51 (Syntactical characterization)
Let L be axiomatized by axioms Ax and rules Ru. TFAE:
@ L is a semilinear logic

Q@ If Tt/ o then there is a linear theory S O T s.t. St/ ¢
© Forevery set of formulae T U {p, 1, x}:
T,o—¢vkLx and T,Wb — kL x imply TFHp x.
Q L (¢ — )V (v — ) and for every set of formulae T U {p, v, x}:
T,ptLx and T,9kLx imply T,V x.
Q. (p—yY)V(—p)andif Ty ¢, thenT V x b ¢ V x for all xs

Q. (p—¥) V(W — @) andif T+ ¢ € Ru, then
TV kL oV forall xs
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Semantical characterization of semilinearity

Theorem 2.52 (Semantic characterization)
Let L be a logic. TFAE:
@ L is a semilinear logic
Q@ the finitely relatively subdirectly irreducible L-algebras are exactly
the L-chains

© the relatively subdirectly irreducible L-algebras are linearly
ordered
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The moral of the story ...

@ fuzzy logics are not so different from the classical logic, they have

» Hilbert style axiomatizations
(and even analytic proof system based on the hypersequents)
» semantics based on real numbers or (linearly) ordered algebras
» a completeness theorem linking those two facets
» usually a co-NP-complete set of theorems (e.g. Lukasiewicz or G)

@ but there are funny things going on:

» deduction theorem could fail
» compactness and finitarity are two different notions

© numerous different fuzzy logics can be designed playing with
the axiomatization or the semantics
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If you want to know more ...

Handbook of
Mathematical Fuzzy Logic Mathematical Fuzzy Logic
Volume 1 Volume 2

Handbook of

P. Cintula, P. Hajek, C. Noguera (editors). Vol. 37 and 38 of Studies in
Logic: Math. Logic and Foundations. College Publications, 2011.
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