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Interpolation in classical FO logic

Theorem (“Lemma 3” in Craig, 1957)
Let ϕ, ψ be sentences of first-order logic such that ` ϕ→ ψ.

There exists a sentence χ such that
• Rel(χ) ⊆ Rel(ϕ) ∩ Rel(ψ),
• ` ϕ→ χ, and
• ` χ→ ψ.

ϕ →

χ

→ ψ

language of ϕ language of ψ
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Origins

“Although I was aware of the mathematical interest of questions
related to elimination problems in logic, my main aim, initially
unfocused, was to try to use methods and results from logic to
clarify or illuminate a topic that seems central to empiricist
programs: In epistemology, the relationship between the
external world and sense data; in philosophy of science, that
between theoretical constructs and observed data.”

Craig (2008)

Applications to mathematical logic:
• Separating projective classes by an elementary class;
• (Beth 1953) Implicit definability implies explicit definability.
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Plan of this talk

• Interpolation in two non-classical propositional logics:

• Łukasiewicz
• Gödel-Dummett

• An algebraic viewpoint on interpolation;
• The more general property of uniform interpolation.
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Warm-up: Classical Propositional Logic
Theorem (Interpolation in Classical Propositional Logic)
Let ϕ(p,q) and ψ(p, r) be two propositional formulas such that
`CPC ϕ→ ψ. There exists a propositional formula χ(p) such
that `CPC ϕ→ χ and `CPC χ→ ψ.

Example
ϕ : ¬(q → p), ψ : p → ¬r
χ :

¬p

p

q r

001

011

010

000

101

111

110

100

ϕ

ψχ
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Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let ϕ(p,q) and ψ(p, r) be two propositional formulas such that
`CPC ϕ→ ψ. There exists a propositional formula χ(p) such
that `CPC ϕ→ χ and `CPC χ→ ψ.

Proof.
One may define χ(p) to be, for example:

χ(p) :=
∧
{θ(p) disjunction of literals | `CPC ϕ→ θ}.

Obviously, `CPC ϕ→ χ. A short argument using semantics or
conjunctive normal form shows that `CPC χ→ ψ (exercise).
Note: the formula χ(p) does not depend on ψ! It is also denoted
∃qϕ and is a uniform interpolant for ϕ; see later in this talk.
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Craig Interpolation in Ł

Consider the formulae of Łukasiewicz logic

ϕ : p ∧ ¬p, ψ : q ∨ ¬q.

Then `Ł ϕ→ ψ, but there is
no formula χ without variables
such that `Ł ϕ→ χ and
`Ł χ→ ψ.
(The only formulae without
variables are 0 and 1.)

ϕ

ψ

p

q

This failure of Craig interpolation is closely related to the failure
of the deduction theorem: ϕ `Ł 0, but 6`Ł ϕ→ 0.
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Deductive Interpolation in Ł

Theorem
Let ϕ(p,q) and ψ(p, r) be formulas of Ł. If ϕ `Ł ψ, then there
exists a formula χ(p) of Ł such that ϕ `Ł χ and χ `Ł ψ.

Proof.
Let Pϕ ⊆ [0,1]p,q and Pψ ⊆ [0,1]p,r be the 1-sets of ϕ and ψ.

Since the projection of Pϕ onto [0,1]p, Q, is a rational
polyhedron, there exists χ(p) whose 1-set in [0,1]p is Q.

The fact that χ is indeed an interpolant is most easily seen in a
picture ...
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Deductive Interpolation in Ł
Theorem
Let ϕ(p,q) and ψ(p, r) be formulas of Ł. If ϕ `Ł ψ, then there
exists a formula χ(p) of Ł such that ϕ `Ł χ and χ `Ł ψ.

Proof by picture.

Pϕ ⊆ [0,1]p,q the 1-set of ϕ.

Pψ ⊆ [0,1]p,r the 1-set of ψ.

χ(p) with 1-set Q = π(Pϕ).

Pϕ ⊆ π−1(Q) = π−1(Pχ) is
clear, so ϕ `Ł χ.

For χ `Ł ψ, see picture.

.

.

.

.

Pϕ

Pψ

Q = Pχ
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Deductive Interpolation, algebraic view

• Our proof of Deductive Interpolation for Ł used (more or
less explictly) the MV-algebra [0,1], and the geometric
representation for (free) MV-algebras.

• We now make a brief excursion into the general algebraic
phenomena related to Deductive Interpolation.

• This will be useful for proving Deductive Interpolation for
Gödel-Dummett logic.
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Deductive Interpolation, algebraic view

Form(p)

Form(p, r )

Form(p,q)

Form(p,q, r )
⊆

⊆ ⊆

⊆

ϕ

ψ

ϕ ` ψχ?

LindT(p)

LindT(p, r)

LindT(p,q)

LindT(p,q, r)

[ϕ]

[ψ]

〈[ϕ] = 1〉 ⊇ 〈[ψ] = 1〉
〈[χ] = 1〉?
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Algebra and Logic

• To any sufficiently well-behaved propositional logic L, one
may associate an equational class (variety) VL of algebraic
structures.

• For example:
• Classical propositional logic↔ Boolean algebras,
• Łukasiewicz logic↔ MV-algebras,
• Gödel-Dummett logic↔ Gödel algebras.

• The free algebra in V on a set of variables p, FV(p),
coincides with the Lindenbaum algebra of L-equivalence
classes of formulas in p.

• Equational consequence (Φ |=V ψ) coincides with logical
consequence (Φ `L ψ).
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Deductive Interpolation, algebraic view
Definition
A class of algebras V has deductive interpolation if, for every
set of equations Φ(p,q) and an equation ψ(p, r) such that
Φ |=V ψ, there exists a set of equations Π(p) such that Φ |=V Π
and Π |=V ψ.

Definition
A class of algebras V has amalgamation if, for any pair of
injective homomorphisms f : A ↪→ B and g : A ↪→ C, there exist
an algebra D and injective homomorphisms h : B ↪→ D and
k : C ↪→ D such that h ◦ f = k ◦ g:

A
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f

g
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Interpolation and amalgamation

Theorem
Let V be a variety. Consider the properties:

1 V has deductive interpolation,
2 For any finite p, q, r , and θ a congruence on FV(p,q),

〈θ〉FV (p,q,r) ∩ FV(p, r) = 〈θ ∩ FV(p)〉FV (p,r).

3 V has amalgamation.

For any variety V, we have (1)⇔ (2)⇐ (3).
If, moreover, V has the congruence extension property, then all
three properties are equivalent.

(Fact. MV-algebras and Gödel algebras have the CEP.)
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If you thought that was complicated...

CEP + FAP

m
TIP =) AP =) WAP =) FAP

m m m m
MIP =) RP =) CDIP =) DIP

m
DIP + EP

Figure 1: Relationships between algebraic and syntactic properties

countable algebras and the equational consequence relation over countably in-
finitely many variables. In this section we consider other closely related “interpo-
lation properties” of equational consequence relations and their algebraic equiva-
lents: in particular, the deductive interpolation property, contextualized deductive
interpolation property, and Maehara interpolation property.

We first give simple direct syntactic proofs that the Robinson property (equiv-
alently, the amalgamation property) both implies the deductive interpolation prop-
erty, and is implied by the conjunction of the deductive interpolation property and
the extension property (Theorem 22). The first proof of this useful fact appeared
in [41], and is credited there to unpublished work of H.J. Keisler. As observed
in [61], the essential ideas underlying the proof may be traced back to Magnus’
work in group theory. Moreover, it was already noted in [39] (see also [32]) that
a seemingly stronger algebraic condition, referred to below as the weak amalga-
mation property, implies the amalgamation property in the presence of the con-
gruence extension property. Our second objective here is to show that the weak
amalgamation property corresponds to a strengthening of the deductive interpo-
lation property that we call the contextualized deductive interpolation property
(Theorem 25), while the deductive interpolation property itself corresponds alge-
braically to an important property of free products, called the flat amalgamation
property (Theorem 23). Finally, we show that the Maehara interpolation property,
a strengthening of both the deductive interpolation property and the contextual-
ized deductive interpolation property – studied, for example, in [72], [57], and
[18] – corresponds both to the conjunction of the amalgamation property and the
congruence extension property, and to the transferable injections property. These
relationships are summarized for the reader’s convenience in Figure 1.

19

Metcalfe, Montagna, Tsinakis (2014)
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Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.

Proof by Picture.
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Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.

Proof.
It suffices to prove it for Gödel chains (Lemma).
Let f : A ↪→ B and g : A ↪→ C be injective homomorphisms.
Define the set D := (B t C)/∼, where ∼ identifies f (a) and
g(a) for every a ∈ A.
Write d1 �D d2 just in case one of the following holds:

• d1,d2 ∈ B and d1 ≤B d2;
• d1,d2 ∈ C and d1 ≤C d2;
• d1 ∈ B, d2 ∈ C, d1 ≤B f (a) and g(a) ≤C d2 for some a ∈ A;
• d1 ∈ C, d2 ∈ B, d1 ≤C g(a) and f (a) ≤B d2 for some a ∈ A.

Then �D is a partial order on D, and any extension of �D to a
total order ≤D yields an amalgamating Gödel chain.

17 / 22



Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.

Proof.
Combine the preceding two theorems.

Corollary
Gödel-Dummett Logic has Craig Interpolation.

Proof.
From the previous Corollary and the Deduction Theorem.
Maksimova (1977) proved that there are exactly 8 logics between
intuitionstic and classical propositional logic that have interpolation.
(There are continuum many logics between IPC and CPC!)
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Uniform Interpolation in G
Theorem
Gödel-Dummett logic has Uniform Interpolation

: for any ϕ(p,q),
there exists a formula ∃qϕ with variables in p which is a
G-interpolant for any ψ(p, r) such that ϕ `G ψ, and a formula
∀qϕ with the dual property.
NB: In this statement, ∃qϕ is just a suggestive notation, there is no
quantification in the language.

Proof.
Gödel-Dummett logic is locally tabular: for a fixed finite p, there
are only finitely many G-equivalence classes of formulas in the
variables p. Thus, we may define:

∃qϕ :=
∧
{θ(p) | ϕ `G θ}.

The (usual) interpolation property ensures that ∃qϕ is a uniform
interpolant. The definition of ∀qϕ is similar (exercise).
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Uniform Interpolation

• Generalizing the above, any locally finite
congruence-distributive variety with amalgamation has
uniform interpolation.

• Outside the locally finite case, uniform interpolation is
much more delicate...

• but IPC does have uniform interpolation! (Pitts 1992)
• Morally, having uniform interpolation means having an

‘internal representation’ of second-order quantification
inside the logic.

• Also see: several papers by Ghilardi and Zawadowski, and
my paper joint with Metcalfe and Tsinakis at TACL 2015.
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Conclusion

• Both Łukasiewicz and Gödel-Dummett logic enjoy
interpolation properties;

• Algebraic and semantic methods are useful for proving this;
• At the first-order level, many problems are open, notably:

does the predicate version of Gödel-Dummett logic have
interpolation?

• Just as ‘normal’ interpolation, uniform interpolation also
corresponds to beautiful properties of the associated class
of algebras; notably with the ‘existentially closed’ algebras.
This deserves more investigation.
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