On (Uniform) Interpolation in Non-Classical Logics

Sam van Gool

Dipartimento di Matematica "Federigo Enriques"
Università degli Studi di Milano

SGSLPS Workshop on Many-Valued Logics
22 May 2015, Bern

Interpolation in classical FO logic

Theorem ("Lemma 3" in Craig, 1957)
Let φ, ψ be sentences of first-order logic such that $\vdash \varphi \rightarrow \psi$.

ψ

Interpolation in classical FO logic

Theorem ("Lemma 3" in Craig, 1957)
Let φ, ψ be sentences of first-order logic such that $\vdash \varphi \rightarrow \psi$.

Interpolation in classical FO logic

Theorem ("Lemma 3" in Craig, 1957)
Let φ, ψ be sentences of first-order logic such that $\vdash \varphi \rightarrow \psi$. There exists a sentence χ such that

- $\operatorname{Rel}(\chi) \subseteq \operatorname{Rel}(\varphi) \cap \operatorname{Rel}(\psi)$,
- $\vdash \varphi \rightarrow \chi$, and
- $\vdash \chi \rightarrow \psi$.

Origins

"Although I was aware of the mathematical interest of questions related to elimination problems in logic, my main aim, initially unfocused, was to try to use methods and results from logic to clarify or illuminate a topic that seems central to empiricist programs: In epistemology, the relationship between the external world and sense data; in philosophy of science, that between theoretical constructs and observed data."

Craig (2008)

Origins

"Although I was aware of the mathematical interest of questions related to elimination problems in logic, my main aim, initially unfocused, was to try to use methods and results from logic to clarify or illuminate a topic that seems central to empiricist programs: In epistemology, the relationship between the external world and sense data; in philosophy of science, that between theoretical constructs and observed data."

Craig (2008)
Applications to mathematical logic:

- Separating projective classes by an elementary class;
- (Beth 1953) Implicit definability implies explicit definability.

Plan of this talk

- Interpolation in two non-classical propositional logics:

Plan of this talk

- Interpolation in two non-classical propositional logics:
- Łukasiewicz
- Gödel-Dummett

Plan of this talk

- Interpolation in two non-classical propositional logics:
- Łukasiewicz
- Gödel-Dummett
- An algebraic viewpoint on interpolation;

Plan of this talk

- Interpolation in two non-classical propositional logics:
- Łukasiewicz
- Gödel-Dummett
- An algebraic viewpoint on interpolation;
- The more general property of uniform interpolation.

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash_{\text {CPC }} \varphi \rightarrow \chi$ and $\vdash_{\text {CPC }} \chi \rightarrow \psi$.

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash_{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Example
$\varphi: \neg(q \rightarrow p), \psi: p \rightarrow \neg r$
χ :

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic) Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash^{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Example
$\varphi: \neg(q \rightarrow p), \psi: p \rightarrow \neg r$
χ :

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic) Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash^{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Example
$\varphi: \neg(q \rightarrow p), \psi: p \rightarrow \neg r$
χ :

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic) Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash^{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Example
$\varphi: \neg(q \rightarrow p), \psi: p \rightarrow \neg r$
χ :

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic) Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash^{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Example
$\varphi: \neg(q \rightarrow p), \psi: p \rightarrow \neg r$
$\chi: \neg p$

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash^{\mathrm{CPC}} \varphi \rightarrow \chi$ and $\vdash_{\mathrm{CPC}} \chi \rightarrow \psi$.

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic) Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash_{\text {CPC }} \varphi \rightarrow \chi$ and $\vdash_{\text {CPC }} \chi \rightarrow \psi$.

Proof.
One may define $\chi(\bar{p})$ to be, for example:
$\chi(\bar{p}):=\bigwedge\{\theta(\bar{p})$ disjunction of literals $\mid \vdash \operatorname{CPC} \varphi \rightarrow \theta\}$.

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash_{\text {CPC }} \varphi \rightarrow \chi$ and $\vdash_{\text {CPC }} \chi \rightarrow \psi$.

Proof.
One may define $\chi(\bar{p})$ to be, for example:

$$
\chi(\bar{p}):=\bigwedge\left\{\theta(\bar{p}) \text { disjunction of literals } \mid \vdash_{\operatorname{CPC}} \varphi \rightarrow \theta\right\} .
$$

Obviously, $\vdash_{\text {CPC }} \varphi \rightarrow \chi$. A short argument using semantics or conjunctive normal form shows that $\vdash_{\text {CPC }} \chi \rightarrow \psi$ (exercise). \square

Warm-up: Classical Propositional Logic

Theorem (Interpolation in Classical Propositional Logic)
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be two propositional formulas such that $\vdash_{\text {CPC }} \varphi \rightarrow \psi$. There exists a propositional formula $\chi(\bar{p})$ such that $\vdash_{\text {CPC }} \varphi \rightarrow \chi$ and $\vdash_{\text {CPC }} \chi \rightarrow \psi$.

Proof.

One may define $\chi(\bar{p})$ to be, for example:

$$
\chi(\bar{p}):=\bigwedge\left\{\theta(\bar{p}) \text { disjunction of literals } \mid \vdash_{\mathrm{CPC}} \varphi \rightarrow \theta\right\} .
$$

Obviously, $\vdash_{\text {CPC }} \varphi \rightarrow \chi$. A short argument using semantics or conjunctive normal form shows that $\vdash_{\text {CPC }} \chi \rightarrow \psi$ (exercise). \square Note: the formula $\chi(\bar{p})$ does not depend on ψ ! It is also denoted $\exists_{\bar{q}} \varphi$ and is a uniform interpolant for φ; see later in this talk.

Craig Interpolation in $Ł$

Consider the formulae of Łukasiewicz logic

$$
\varphi: p \wedge \neg p, \quad \psi: q \vee \neg q
$$

Craig Interpolation in $Ł$

Consider the formulae of Łukasiewicz logic

$$
\varphi: p \wedge \neg p, \quad \psi: q \vee \neg q
$$

Then $\vdash_{Ł} \varphi \rightarrow \psi$,

Craig Interpolation in $Ł$

Consider the formulae of Łukasiewicz logic

$$
\varphi: p \wedge \neg p, \quad \psi: q \vee \neg q
$$

Then $\vdash_{Ł} \varphi \rightarrow \psi$, but there is no formula χ without variables such that $\vdash_{Ł} \varphi \rightarrow \chi$ and
$\vdash_{Ł} \chi \rightarrow \psi$.

Craig Interpolation in $Ł$

Consider the formulae of Łukasiewicz logic

$$
\varphi: p \wedge \neg p, \quad \psi: q \vee \neg q
$$

Then $\vdash_{Ł} \varphi \rightarrow \psi$, but there is no formula χ without variables such that $\vdash_{Ł} \varphi \rightarrow \chi$ and $\vdash_{Ł} \chi \rightarrow \psi$.
(The only formulae without variables are 0 and 1.)

Craig Interpolation in $Ł$

Consider the formulae of Łukasiewicz logic

$$
\varphi: p \wedge \neg p, \quad \psi: q \vee \neg q
$$

Then $\vdash_{Ł} \varphi \rightarrow \psi$, but there is no formula χ without variables such that $\vdash_{Ł} \varphi \rightarrow \chi$ and $\vdash_{Ł} \chi \rightarrow \psi$.
(The only formulae without variables are 0 and 1.)

This failure of Craig interpolation is closely related to the failure of the deduction theorem: $\varphi \vdash_{Ł} 0$, but $\nvdash Ł \varphi \rightarrow 0$.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł \chi}$ and $\chi \vdash_{Ł} \psi$.

Proof.
Let $P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ and $P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ be the 1 -sets of φ and ψ.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.

Proof.
Let $P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ and $P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ be the 1-sets of φ and ψ.
Since the projection of P_{φ} onto $[0,1]^{\bar{\rho}}, Q$, is a rational polyhedron, there exists $\chi(\bar{p})$ whose 1 -set in $[0,1]^{\bar{p}}$ is Q.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.

Proof.
Let $P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ and $P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ be the 1 -sets of φ and ψ.
Since the projection of P_{φ} onto $[0,1]^{\bar{p}}, Q$, is a rational polyhedron, there exists $\chi(\bar{p})$ whose 1-set in $[0,1]^{\bar{p}}$ is Q.

The fact that χ is indeed an interpolant is most easily seen in a picture ...

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{a}}$ the 1 -set of φ.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł \chi}$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł \chi}$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł \chi}$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{\rho}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation in $Ł$

Theorem
Let $\varphi(\bar{p}, \bar{q})$ and $\psi(\bar{p}, \bar{r})$ be formulas of $Ł$. If $\varphi \vdash_{Ł} \psi$, then there exists a formula $\chi(\bar{p})$ of $Ł$ such that $\varphi \vdash_{Ł} \chi$ and $\chi \vdash_{Ł} \psi$.
Proof by picture.
$P_{\varphi} \subseteq[0,1]^{\bar{p}, \bar{q}}$ the 1-set of φ.
$P_{\psi} \subseteq[0,1]^{\bar{p}, \bar{r}}$ the 1-set of ψ.
$\chi(\bar{p})$ with 1-set $Q=\pi\left(P_{\varphi}\right)$.
$P_{\varphi} \subseteq \pi^{-1}(Q)=\pi^{-1}\left(P_{\chi}\right)$ is clear, so $\varphi \vdash_{Ł} \chi$.

For $\chi \vdash_{Ł} \psi$, see picture.

Deductive Interpolation, algebraic view

- Our proof of Deductive Interpolation for $Ł$ used (more or less explictly) the MV-algebra [0, 1], and the geometric representation for (free) MV-algebras.

Deductive Interpolation, algebraic view

- Our proof of Deductive Interpolation for $Ł$ used (more or less explictly) the MV-algebra [0, 1], and the geometric representation for (free) MV-algebras.
- We now make a brief excursion into the general algebraic phenomena related to Deductive Interpolation.

Deductive Interpolation, algebraic view

- Our proof of Deductive Interpolation for $Ł$ used (more or less explictly) the MV-algebra [0, 1], and the geometric representation for (free) MV-algebras.
- We now make a brief excursion into the general algebraic phenomena related to Deductive Interpolation.
- This will be useful for proving Deductive Interpolation for Gödel-Dummett logic.

Deductive Interpolation, algebraic view

Deductive Interpolation, algebraic view

[φ]
LindT($\bar{p}, \bar{q})$

LindT($\bar{p})$
LindT $(\bar{p}, \bar{q}, \bar{r})$

LindT($\bar{p}, \bar{r})$
[ψ]

Deductive Interpolation, algebraic view

[φ]
LindT($\bar{p}, \bar{q})$

LindT($\bar{p})$
$\operatorname{LindT}(\bar{p}, \bar{q}, \bar{r})$
$\langle[\varphi]=1\rangle \supseteq\langle[\psi]=1\rangle$
LindT($\bar{p}, \bar{r})$
[ψ]

Deductive Interpolation, algebraic view

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:
- Classical propositional logic \leftrightarrow Boolean algebras,

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:
- Classical propositional logic \leftrightarrow Boolean algebras,
- Łukasiewicz logic $\leftrightarrow M V$-algebras,

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:
- Classical propositional logic \leftrightarrow Boolean algebras,
- Łukasiewicz logic \leftrightarrow MV-algebras,
- Gödel-Dummett logic \leftrightarrow Gödel algebras.

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:
- Classical propositional logic \leftrightarrow Boolean algebras,
- Łukasiewicz logic \leftrightarrow MV-algebras,
- Gödel-Dummett logic \leftrightarrow Gödel algebras.
- The free algebra in \mathcal{V} on a set of variables $\bar{p}, \mathbf{F}_{\mathcal{V}}(\bar{p})$, coincides with the Lindenbaum algebra of L-equivalence classes of formulas in \bar{p}.

Algebra and Logic

- To any sufficiently well-behaved propositional logic L, one may associate an equational class (variety) $\mathcal{V}_{\mathbf{L}}$ of algebraic structures.
- For example:
- Classical propositional logic \leftrightarrow Boolean algebras,
- Łukasiewicz logic $\leftrightarrow M V$-algebras,
- Gödel-Dummett logic \leftrightarrow Gödel algebras.
- The free algebra in \mathcal{V} on a set of variables $\bar{p}, \mathbf{F}_{\mathcal{V}}(\bar{p})$, coincides with the Lindenbaum algebra of L-equivalence classes of formulas in \bar{p}.
- Equational consequence ($\Phi \models \mathcal{V} \psi$) coincides with logical consequence ($\Phi \vdash \mathbf{L} \psi$).

Deductive Interpolation, algebraic view

Definition

A class of algebras \mathcal{V} has deductive interpolation if, for every set of equations $\boldsymbol{\Phi}(\bar{p}, \bar{q})$ and an equation $\psi(\bar{p}, \bar{r})$ such that $\Phi \models \mathcal{V} \psi$, there exists a set of equations $\Pi(\bar{p})$ such that $\Phi \models \mathcal{} \square$ and $\Pi \models_{\nu} \psi$.

Deductive Interpolation, algebraic view

Definition

A class of algebras \mathcal{V} has deductive interpolation if, for every set of equations $\Phi(\bar{p}, \bar{q})$ and an equation $\psi(\bar{p}, \bar{r})$ such that $\Phi \equiv \mathcal{V} \psi$, there exists a set of equations $\Pi(\bar{p})$ such that $\Phi \equiv \mathcal{} \square$ and $\Pi=\nu \psi$.

Definition

A class of algebras \mathcal{V} has amalgamation if, for any pair of injective homomorphisms $f: A \hookrightarrow B$ and $g: A \hookrightarrow C$, there exist an algebra D and injective homomorphisms $h: B \hookrightarrow D$ and $k: C \hookrightarrow D$ such that $h \circ f=k \circ g$

Deductive Interpolation, algebraic view

Definition

A class of algebras \mathcal{V} has deductive interpolation if, for every set of equations $\Phi(\bar{p}, \bar{q})$ and an equation $\psi(\bar{p}, \bar{r})$ such that $\Phi \models \mathcal{V} \psi$, there exists a set of equations $\Pi(\bar{p})$ such that $\Phi \models \mathcal{V}$ and $\Pi=\nu \psi$.

Definition

A class of algebras \mathcal{V} has amalgamation if, for any pair of injective homomorphisms $f: A \hookrightarrow B$ and $g: A \hookrightarrow C$, there exist an algebra D and injective homomorphisms $h: B \hookrightarrow D$ and $k: C \hookrightarrow D$ such that $h \circ f=k \circ g$:

Interpolation and amalgamation

Theorem

Let \mathcal{V} be a variety. Consider the properties:
(1) \mathcal{V} has deductive interpolation,
(2) For any finite $\bar{p}, \bar{q}, \bar{r}$, and θ a congruence on $\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{q})$,

$$
\langle\theta\rangle_{\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{q}, \bar{r})} \cap \mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{r})=\left\langle\theta \cap \mathbf{F}_{\mathcal{V}}(\bar{p})\right\rangle_{\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{r})} .
$$

(3) \mathcal{V} has amalgamation.

For any variety \mathcal{V}, we have $(1) \Leftrightarrow(2) \Leftarrow(3)$.
If, moreover, \mathcal{V} has the congruence extension property, then all three properties are equivalent.

Interpolation and amalgamation

Theorem

Let \mathcal{V} be a variety. Consider the properties:
(1) \mathcal{V} has deductive interpolation,
(2) For any finite $\bar{p}, \bar{q}, \bar{r}$, and θ a congruence on $\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{q})$,

$$
\langle\theta\rangle_{\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{q}, \bar{r})} \cap \mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{r})=\left\langle\theta \cap \mathbf{F}_{\mathcal{V}}(\bar{p})\right\rangle_{\mathbf{F}_{\mathcal{V}}(\bar{p}, \bar{r})} .
$$

(3) \mathcal{V} has amalgamation.

For any variety \mathcal{V}, we have $(1) \Leftrightarrow(2) \Leftarrow(3)$.
If, moreover, \mathcal{V} has the congruence extension property, then all three properties are equivalent.
(Fact. MV-algebras and Gödel algebras have the CEP.)

If you thought that was complicated...

```
CEP + FAP
    ॥
    TIP \(\Longrightarrow \mathrm{AP} \Longrightarrow\) WAP \(\Longrightarrow\) FAP
```



```
    MIP \(\Longrightarrow\) RP \(\Longrightarrow\) CDIP \(\Longrightarrow\) DIP
        §
    DIP + EP
```

Metcalfe, Montagna, Tsinakis (2014)

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture.

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture.

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture.

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.

Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.
Proof by Picture. ${ }^{18}$

Amalgamation of Gödel algebras

Theorem
The variety of Gödel algebras has amalgamation.

Proof.

It suffices to prove it for Gödel chains (Lemma).
Let $f: A \hookrightarrow B$ and $g: A \hookrightarrow C$ be injective homomorphisms.
Define the set $D:=(B \sqcup C) / \sim$, where \sim identifies $f(a)$ and $g(a)$ for every $a \in A$.
Write $d_{1} \preceq_{D} d_{2}$ just in case one of the following holds:

- $d_{1}, d_{2} \in B$ and $d_{1} \leq_{B} d_{2} ;$
- $d_{1}, d_{2} \in C$ and $d_{1} \leq_{C} d_{2}$;
- $d_{1} \in B, d_{2} \in C, d_{1} \leq_{B} f(a)$ and $g(a) \leq_{C} d_{2}$ for some $a \in A$;
- $d_{1} \in C, d_{2} \in B, d_{1} \leq_{C} g(a)$ and $f(a) \leq_{B} d_{2}$ for some $a \in A$.

Then \preceq_{D} is a partial order on D, and any extension of \preceq_{D} to a total order \leq_{D} yields an amalgamating Gödel chain.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.
Proof.
Combine the preceding two theorems.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.
Proof.
Combine the preceding two theorems.
Corollary
Gödel-Dummett Logic has Craig Interpolation.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.
Proof.
Combine the preceding two theorems.
Corollary
Gödel-Dummett Logic has Craig Interpolation.
Proof.
From the previous Corollary and the Deduction Theorem.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.
Proof.
Combine the preceding two theorems.
Corollary
Gödel-Dummett Logic has Craig Interpolation.
Proof.
From the previous Corollary and the Deduction Theorem.
Maksimova (1977) proved that there are exactly 8 logics between intuitionstic and classical propositional logic that have interpolation.

Interpolation in Gödel-Dummett Logic

Corollary
Gödel-Dummett Logic has Deductive Interpolation.
Proof.
Combine the preceding two theorems.
Corollary
Gödel-Dummett Logic has Craig Interpolation.
Proof.
From the previous Corollary and the Deduction Theorem.
Maksimova (1977) proved that there are exactly 8 logics between intuitionstic and classical propositional logic that have interpolation.
(There are continuum many logics between IPC and CPC!)

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q}} \varphi$ with variables in \bar{p} which is a \mathbf{G}-interpolant for any $\psi(\overline{\boldsymbol{p}}, \stackrel{\Gamma}{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q} \varphi}$ with variables in \bar{p} which is a \mathbf{G}-interpolant for any $\psi(\overline{\boldsymbol{p}}, \bar{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$, and a formula $\forall_{\bar{q}} \varphi$ with the dual property.

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q}} \varphi$ with variables in \bar{p} which is a \mathbf{G}-interpolant for any $\psi(\overline{\boldsymbol{p}}, \bar{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$, and a formula $\forall_{\bar{q}} \varphi$ with the dual property.
NB: In this statement, $\exists_{\bar{q}} \varphi$ is just a suggestive notation, there is no quantification in the language.

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q}} \varphi$ with variables in \bar{p} which is a \mathbf{G}-interpolant for any $\psi(\overline{\boldsymbol{p}}, \bar{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$, and a formula $\forall_{\bar{q}} \varphi$ with the dual property.
NB: In this statement, $\exists_{\bar{q}} \varphi$ is just a suggestive notation, there is no quantification in the language.

Proof.

Gödel-Dummett logic is locally tabular: for a fixed finite \bar{p}, there are only finitely many \mathbf{G}-equivalence classes of formulas in the variables \bar{p}.

Uniform Interpolation in G

Theorem
Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q}} \varphi$ with variables in \bar{p} which is a \mathbf{G}-interpolant for any $\psi(\overline{\boldsymbol{p}}, \bar{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$, and a formula $\forall_{\bar{q}} \varphi$ with the dual property.
NB: In this statement, $\exists_{\bar{q}} \varphi$ is just a suggestive notation, there is no quantification in the language.

Proof.

Gödel-Dummett logic is locally tabular: for a fixed finite \bar{p}, there are only finitely many \mathbf{G}-equivalence classes of formulas in the variables \bar{p}. Thus, we may define:

$$
\exists_{\bar{q}} \varphi:=\bigwedge\left\{\theta(\bar{p}) \mid \varphi \vdash_{\mathbf{G}} \theta\right\} .
$$

Uniform Interpolation in G

Theorem

Gödel-Dummett logic has Uniform Interpolation: for any $\varphi(\bar{p}, \bar{q})$, there exists a formula $\exists_{\bar{q}} \varphi$ with variables in \bar{p} which is a G-interpolant for any $\psi(\bar{p}, \bar{r})$ such that $\varphi \vdash_{\mathbf{G}} \psi$, and a formula $\forall_{\bar{q}} \varphi$ with the dual property.
NB: In this statement, $\exists_{\bar{q}} \varphi$ is just a suggestive notation, there is no quantification in the language.

Proof.

Gödel-Dummett logic is locally tabular: for a fixed finite \bar{p}, there are only finitely many G-equivalence classes of formulas in the variables \bar{p}. Thus, we may define:

$$
\exists_{\bar{q}} \varphi:=\bigwedge\left\{\theta(\bar{p}) \mid \varphi \vdash_{\mathbf{G}} \theta\right\} .
$$

The (usual) interpolation property ensures that $\exists_{\bar{q}} \varphi$ is a uniform interpolant. The definition of $\forall_{\bar{q}} \varphi$ is similar (exercise).

Uniform Interpolation

- Generalizing the above, any locally finite congruence-distributive variety with amalgamation has uniform interpolation.

Uniform Interpolation

- Generalizing the above, any locally finite congruence-distributive variety with amalgamation has uniform interpolation.
- Outside the locally finite case, uniform interpolation is much more delicate...

Uniform Interpolation

- Generalizing the above, any locally finite congruence-distributive variety with amalgamation has uniform interpolation.
- Outside the locally finite case, uniform interpolation is much more delicate...
- but IPC does have uniform interpolation! (Pitts 1992)

Uniform Interpolation

- Generalizing the above, any locally finite congruence-distributive variety with amalgamation has uniform interpolation.
- Outside the locally finite case, uniform interpolation is much more delicate...
- but IPC does have uniform interpolation! (Pitts 1992)
- Morally, having uniform interpolation means having an 'internal representation' of second-order quantification inside the logic.

Uniform Interpolation

- Generalizing the above, any locally finite congruence-distributive variety with amalgamation has uniform interpolation.
- Outside the locally finite case, uniform interpolation is much more delicate...
- but IPC does have uniform interpolation! (Pitts 1992)
- Morally, having uniform interpolation means having an 'internal representation' of second-order quantification inside the logic.
- Also see: several papers by Ghilardi and Zawadowski, and my paper joint with Metcalfe and Tsinakis at TACL 2015.

Conclusion

- Both Łukasiewicz and Gödel-Dummett logic enjoy interpolation properties;

Conclusion

- Both Łukasiewicz and Gödel-Dummett logic enjoy interpolation properties;
- Algebraic and semantic methods are useful for proving this;

Conclusion

- Both Łukasiewicz and Gödel-Dummett logic enjoy interpolation properties;
- Algebraic and semantic methods are useful for proving this;
- At the first-order level, many problems are open, notably: does the predicate version of Gödel-Dummett logic have interpolation?

Conclusion

- Both Łukasiewicz and Gödel-Dummett logic enjoy interpolation properties;
- Algebraic and semantic methods are useful for proving this;
- At the first-order level, many problems are open, notably: does the predicate version of Gödel-Dummett logic have interpolation?
- Just as 'normal' interpolation, uniform interpolation also corresponds to beautiful properties of the associated class of algebras; notably with the 'existentially closed' algebras. This deserves more investigation.

On (Uniform) Interpolation in Non-Classical Logics

Sam van Gool

Dipartimento di Matematica "Federigo Enriques"
Università degli Studi di Milano

SGSLPS Workshop on Many-Valued Logics
22 May 2015, Bern

