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We start with a (�nite or in�nite) set of propositional variables,

or atomic formul�, that are to stand for propositions. Say, if we

content ourselves with countably many:

X1,X2, . . . ,Xn , . . . .

(We can use p, q , etc. as a lighter short-hand notation.)

To

these we adjoin two symbols > and ⊥, say, that are to stand for

a proposition that is always true (the verum), and one that is

always false (the falsum), respectively.

To construct compound formul� we use the logical connectives:

∨, for disjunction (\inclusive or", Latin vel);

∧, for conjunction (\and", Latin et);→, for implication (\if. . . then. . . ", conditional assertions);

¬, for negation (\not", negative assertions).
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The usual recursive de�nition of general formul� now reads as

follows.

> and ⊥ are formul�.

All propositional variables are formul�.

If α and β are formul�, so are (α∨ β), (α∧ β), (α→ β),

and ¬α.

Nothing else is a formula.

Let us write Form for the set of all formul� constructed over

the countable language X1, . . . ,Xn , . . .. Observe that formul�

are de�ned exactly in the same manner in classical logic.
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We now de�ne a formal semantics for our logic.  Lukasiewicz

logic has a many-valued semantics: speci�cally, we take

[0, 1] ⊆ R as a set of \truth values".

An assignment of truth values, or an evaluation, or a possible

world is an assignment

w : Form→ [0, 1]

subject to the following truth-functional conditions for any

formul� α and β.

w(⊥) = 0.

w(¬α) = 1 − w(α).

w(α→ β) =

{
1 if w(α) 6 w(β)

1 − (w(α) − w(β)) otherwise.
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Truth-function of  Lukasiewicz implication.

w(α→ β) =

{
1 if w(α) 6 w(β)

1 − (w(α) − w(β)) otherwise.
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Truth-function of  Lukasiewicz implication.

w(α→ β) = min {1, 1 − (w(α) − w(β))}
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We are using {⊥,¬,→} only as primitive connectives. The

remaining ones (>, ∨, and ∧) are de�nable as in classical logic.

And it is customary to de�ne more.

Notation Definition Name

⊥ { Falsum

> ¬⊥ Verum

¬α { Negation

α→ β { Implication

α∨ β (α→ β)→ β (Lattice) Disjunction

α∧ β ¬(¬α∨ ¬β) (Lattice) Conjunction

α↔ β (α→ β)∧ (β→ α) Biconditional

α⊕ β ¬α→ β Strong disjunction

α� β ¬(α→ ¬β) Strong conjunction

α	 β ¬(α→ β) Co-implication

Table: Connectives in  Lukasiewicz logic.
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The corresponding formal semantics is as follows:

Notation Formal semantics

⊥ w(⊥) = 0

> w(>) = 1

¬α w(¬α) = 1 − w(α)

α→ β w(α→ β) = min {1, 1 − (w(α) − w(β))}

α∨ β w(α∨ β) = max {w(α),w(β)}

α∧ β w(α∧ β) = min {w(α),w(β)}

α↔ β w(α↔ β) = 1 − |w(α) − w(β)|

α⊕ β w(α⊕ β) = min {1,w(α) + w(β)}

α� β w(α� β) = max {0,w(α) + w(β) − 1}

α	 β w(α	 β) = max {0,w(α) − w(β)}

Table: Formal semantics of connectives in  Lukasiewicz logic.
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Truth-function of  Lukasiewicz \strong conjunction" �.

(Note: Non-idempotent operation.)

w(α� β) = max {0,w(α) + w(β) − 1}
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Analytic truths, or tautologies after L. Wittgenstein, are now

de�ned as those formul� α ∈ Form that are true in every

possible world, i.e. such that w(α) = 1 for any assignment w .

⊥→ α (Ex falso quodlibet)

α∨ ¬α (Tertium non datur)

¬(α∧ ¬α) (Principle of non-contradiction)

¬¬α→ α (Law of double negation)

(¬α→ α)→ α (Consequentia mirabilis)

(α→ β)→ (¬β→ ¬α) (Contraposition)

(α→ β)∨ (β→ α) (Pre-linearity)

De�ne: Taut ⊆ Form is the set of all tautologies. Write: � α
to mean α ∈ Taut.
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Tautologies are a formal semantic notion. Logic is concerned

with the relationship between syntax (the language) and

semantics (the world).

The syntactic counterpart of a tautology is a provable formula,

also called theorem of the logic.

To de�ne provability, we select (with a lot of hindsight) a set of

tautologies, and declare that they are axioms: they count as

provable formul� by de�nition.

Next we select a set of deduction rules that tell us that if we

already established that formul� α1, . . . , αn are provable, and

these have a certain shape, then a speci�c formula β is also a

provable formula.
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Most important deduction rule (only one we use): modus

ponens.
α α→ β

β
(mp)

Now we declare that a formula α ∈ Form is provable if there

exists a proof of α, that is, a �nite sequence of formul�

α1, . . . , αl a such that:

αl = α.

Each αi , i < l is either an axiom, or is obtainable from αj

and αk , j , k < i , via an application of modus ponens.

De�ne: Thm ⊆ Form is the set of provable formul�. Write:

` α to mean α ∈ Thm.

We still need to de�ne the axioms.
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Axiom system for classical logic.

(A0) ⊥→ α Ex falso quodlibet.

(A1) α→ (β→ α) A fortiori.

(A2) (α→ β) → ((β→ γ)→ (α→ γ)) Implication is transitive.

(A3) ((α→ β)→ β) → ((β→ α)→ α) ?

(A4) (α→ β) → (¬β→ ¬α) Contraposition.

(A5) (¬α→ α) → α Consequentia Mirabilis.

Upon de�ning

α∨ β ≡ (α→ β) → β

(A0{A5) read as shown next.
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Axiom system for  Lukasiewicz logic.
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 Lukasiewicz logic can be succinctly described as

classical logic without the Aristotelian law of

Tertium non datur, but with the Ex falso quodlibet

law.

Such \succint descriptions" can be polysemous to a surprising

extent indeed.
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 Lukasiewicz Intuitionistic logic can be succinctly

described as classical logic without the Aristotelian

law of Tertium non datur, but with the Ex falso

quodlibet law.1

Such \succint descriptions" can be polysemous to a surprising

extent indeed.

::::::
Moral: The import of removing one axiom from an axiom

system depends on the axiom system itself. In particular,

Hilbert-style systems are of little use to analyse the structural

properties of logics in terms of a speci�c axiomatisation.

(For this, the Gentzen-style systems used in proof theory are

more useful.)

1Almost verbatim from J. Moschovakis, Intuitionistic Logic, The

Stanford Encyclopedia of Philosophy, 2010, Edward N. Zalta (ed.).
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This concludes our de�nition of  Lukasiewicz (propositional)

logic.

A �rst important result. In  Lukasiewicz logic, the relationship

between tautologies and theorems is entirely analogous to the

one that holds in classical logic. It is stated in the next result, a

substantial piece of mathematics:

Soundness and Completeness Theorem for  L

Taut = Thm .

A. Rose and J. Barkley Rosser, Trans. of the AMS, 1958.

Proof is syntactic. Algebraic proof given shortly thereafter by

C.C. Chang, which introduced MV-algebras for this purpose.

We will return to them if time allows.
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Classical logic satis�es a stronger completeness theorem. For

S , {α} ⊆ Form, write S ` α if α is provable form the logical

axioms augmented by S , and S � α if α holds in each model

(=possible world, assignment) wherein each formula of S holds.

Strong Completeness Theorem for CL

For any α ∈ Form, and any set S ⊆ Form,

S � α if, and only if, S ` α .

In the actual use of any logic, it is of great importance to have

completeness under additional sets S of assumptions. It is S

that encodes our knowledge about a speci�c application

domain. Pure logic (S = ∅) can teach us nothing about the

world, by de�nition.
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(=possible world, assignment) wherein each formula of S holds.

Strong Completeness Theorem for CL

For any α ∈ Form, and any set S ⊆ Form,

S � α if, and only if, S ` α .

In the actual use of any logic, it is of great importance to have
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that encodes our knowledge about a speci�c application

domain. Pure logic (S = ∅) can teach us nothing about the
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 Lukasiewicz logic fails strong completeness.

Let S be the set of formul� in one variable p:

ϕn(p) := ((n + 1)(pn ∧ ¬p))⊕ pn+1 ,

for each integer n > 1, where

pk := p � · · · � p︸ ︷︷ ︸
k times

,

kp := p ⊕ · · · ⊕ p︸ ︷︷ ︸
k times

.

Then S 6` L p, but S � L p.
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S 6` L p, but S � L p.

Intuitively, you can think of S as embodying the following

in�nite set of assumptions:

1 p :=\Enzo is tall" is true to degree > 1/2.
2 p :=\Enzo is tall" is true to degree > 2/3.
3 p :=\Enzo is tall" is true to degree > 3/4.
4 . . .

Syntactically, it does not follow that: \Enzo is tall" is true

to degree = 1.", i.e. S 6` L p. This is because any proof of p

from S can only uses a �nite subset of S .

Semantically, the only possible world compatible with all

of S is the one such that w(p) = 1, i.e. S � L p.

Taking stock. ` L is compact, but � L is not.

Note. S ` L α⇒ S � L α always.
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The Hay-W�ojcicki Theorem:

Completeness Theorem for f.a. theories in  L

For any α ∈ Form, and any �nite set F ⊆ Form,

F � L α if, and only if, F ` L α .

A folklore theorem:

Completeness Theorem for maximal theories in  L

For any α ∈ Form, and any maximal consistent set M ⊆ Form,

M � L α if, and only if, M ` L α .
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Satisfiability and consistency in  L

Notion Definition Description

α is satis�able ∃w such that w(α) = 1 α is 1-satis�abile

α is consistent ∃β such that α 6` L β α does not prove smthg.

α is unsatis�able ∀w we have w(α) < 1 α is not 1-satis�able

α is inconsistent ∀β we have α ` L β α proves everything

α is strongly unsat. ∀w we have w(α) = 0 α is always false

α is strongly incon. ∀β we have ` L α→ β α implies everything

Nota Bene. The terminology \Strongly unsatis�able/inconsistent" is

not standard. I only use it for ease of exposition. I do not know of a

standard terminology for these concepts.



 Lukasiewicz Chang Polyhedra Epilogue

Satisfiability and consistency in  L

Notion Definition Description

α is satis�able ∃w such that w(α) = 1 α is 1-satis�abile

α is consistent ∃β such that α 6` L β α does not prove smthg.

α is unsatis�able ∀w we have w(α) < 1 α is not 1-satis�able

α is inconsistent ∀β we have α ` L β α proves everything

α is strongly unsat. ∀w we have w(α) = 0 α is always false

α is strongly incon. ∀β we have ` L α→ β α implies everything

Nota Bene. The terminology \Strongly unsatis�able/inconsistent" is

not standard. I only use it for ease of exposition. I do not know of a

standard terminology for these concepts.



 Lukasiewicz Chang Polyhedra Epilogue

Satisfiability and consistency in  L

Notion Definition Description

α is satis�able ∃w such that w(α) = 1 α is 1-satis�abile

α is consistent ∃β such that α 6` L β α does not prove smthg.

α is unsatis�able ∀w we have w(α) < 1 α is not 1-satis�able

α is inconsistent ∀β we have α ` L β α proves everything

α is strongly unsat. ∀w we have w(α) = 0 α is always false

α is strongly incon. ∀β we have ` L α→ β α implies everything

Equivalent in classical logic by the Principle of Bivalence.
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Deduction Theorem for CL

For any α,β ∈ Form,

α ` β if, and only if, ` α→ β .

The direction ⇒ fails in  L: α ` L α� α, but 6` L α→ α� α.

Local Deduction Theorem for  L

For any α,β ∈ Form,

α ` L β if, and only if, ∃n > 1 such that ` L α
n → β .

(Notation: αn := α� · · · � α︸ ︷︷ ︸
n times

.)
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The failure of the deduction theorem in  Lukasiewicz logic is of

paramount conceptual importance:

1 We cannot think of α→ β as \from the assumption of α,

there follows β", i.e. as α ` β. The  Lukasiewicz

implication is not a conditional.

2 The (Fregean) distinction between asserting a proposition

and contemplating that proposition becomes essential: in

classical logic, deduction theorem+bivalence make that

distinction far less important. (Cf. the Tarskian

identi�cation of the meaning of a proposition α with its

truth conditions: this fails badly in  Lukasiewicz logic.)

3 As a consequence of the two previous items, while it is easy

to say what the assertion ` α→ β means, it is far harder

to say what the plain proposition α→ β means. In other

words, the intended meaning of the connective → is

unclear.
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Symbol Name Classically read

> verum Always true

⊥ falsum Always false

∨ disjunction Inclusive or (vel)

∧ conjunction And→ implication If. . . then. . .

¬ negation Not

Notation Definition Formal Semantics

> ¬⊥ w(>) = 1

α∨ β (α→ β)→ β w(α∨ β) = max {w(α),w(β)}

α∧ β ¬(¬α∨ ¬β) w(α∧ β) = min {w(α),w(β)}

α↔ β (α→ β)∧ (β→ α) w(α↔ β) = 1 − |w(α) − w(β)|

α⊕ β ¬α→ β w(α⊕ β) = min {w(α) + w(β), 1}

α	 β ¬(α→ β) w(α	 β) = max {w(α) − w(β), 0}

Table: Connectives in  Lukasiewicz logic.
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Truth-function of  Lukasiewicz implication.

w(α→ β) = min {1, 1 − (w(α) − w(β))}

w(α→ β) =

{
1 if w(α) 6 w(β)

1 − (w(α) − w(β)) otherwise.
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MV-algebras

C. C. Chang in Rome, 1969.

Lindenbaum’s Equivalence Relation

Say α,β ∈ Form are logically equivalent if ` α↔ β. Write

α ≡ β.



 Lukasiewicz Chang Polyhedra Epilogue

MV-algebras

C. C. Chang in Rome, 1969.

Lindenbaum’s Equivalence Relation

Say α,β ∈ Form are logically equivalent if ` α↔ β. Write

α ≡ β.



 Lukasiewicz Chang Polyhedra Epilogue

On the quotient set Form

≡ , the connectives induce operations:

0 := [⊥]≡
¬[α]≡ := [¬α]≡
[α]≡ ⊕ [β]≡ := [α⊕ β]≡

The algebraic structure (Form≡ ,⊕,¬, 0) is an MV-algebra.

`MV-algebra' is short for `Many-Valued Algebra', \for lack

of a better name."

(C.C. Chang, 1986).

MV-algebras :  Lukasiewicz logic = Boolean algebras : Classical logic

Abstractly: (M ,⊕,¬, 0) is an MV-algebra if (M ,⊕, 0) is a

commutative monoid, ¬¬x = x , 1 := ¬0 is absorbing for ⊕
(x ⊕ 1 = 1), and, characteristically,

¬(¬x ⊕ y)⊕ y = ¬(¬y ⊕ x )⊕ x (*)
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Any MV-algebra has an underlying distributive lattice bounded

below by 0 and above by 1. Joins are given by

x ∨ y := ¬(¬x ⊕ y)⊕ y

Thus, the characteristic law (*) states that joins commute:

x ∨ y = y ∨ x

Meets are de�ned by the de Morgan condition

x ∧ y := ¬(¬x ∨ ¬y)

Boolean algebras=Idempotent MV-algebras: x ⊕ x = x .

Equivalently: MV-algebras that satisfy the tertium non datur

law

x ∨ ¬x = 1

.



 Lukasiewicz Chang Polyhedra Epilogue

Any MV-algebra has an underlying distributive lattice bounded

below by 0 and above by 1. Joins are given by

x ∨ y := ¬(¬x ⊕ y)⊕ y

Thus, the characteristic law (*) states that joins commute:

x ∨ y = y ∨ x

Meets are de�ned by the de Morgan condition

x ∧ y := ¬(¬x ∨ ¬y)

Boolean algebras=Idempotent MV-algebras: x ⊕ x = x .

Equivalently: MV-algebras that satisfy the tertium non datur

law

x ∨ ¬x = 1

.



 Lukasiewicz Chang Polyhedra Epilogue

Any MV-algebra has an underlying distributive lattice bounded

below by 0 and above by 1. Joins are given by

x ∨ y := ¬(¬x ⊕ y)⊕ y

Thus, the characteristic law (*) states that joins commute:

x ∨ y = y ∨ x

Meets are de�ned by the de Morgan condition

x ∧ y := ¬(¬x ∨ ¬y)

Boolean algebras=Idempotent MV-algebras: x ⊕ x = x .

Equivalently: MV-algebras that satisfy the tertium non datur

law

x ∨ ¬x = 1

.



 Lukasiewicz Chang Polyhedra Epilogue

Any MV-algebra has an underlying distributive lattice bounded

below by 0 and above by 1. Joins are given by

x ∨ y := ¬(¬x ⊕ y)⊕ y

Thus, the characteristic law (*) states that joins commute:

x ∨ y = y ∨ x

Meets are de�ned by the de Morgan condition

x ∧ y := ¬(¬x ∨ ¬y)

Boolean algebras=Idempotent MV-algebras: x ⊕ x = x .

Equivalently: MV-algebras that satisfy the tertium non datur

law

x ∨ ¬x = 1

.



 Lukasiewicz Chang Polyhedra Epilogue

The interval [0, 1] ⊆ R can be made into an MV-algebra with

neutral element 0 by de�ning

x ⊕ y := min {x + y , 1} , ¬x := 1 − x .

The underlying lattice order of this MV-algebra coincides with

the natural order of [0, 1].

Theorem (Chang’s completeness theorem, 1959)

The variety of MV-algebras is generated by [0, 1].

C.C. Chang, Trans. of the AMS, 1959.

This means: The class of MV-algebras coincides with HSP ([0, 1]) |

any MV-algebra can be represented as a homomorphic image of a

subalgebra of a product of copies of [0, 1].

Or: The equations (in the language of MV-algebras) that hold in all

MV-algebras are exactly those that hold in [0, 1].

Or: Any α ∈ Form that has a counter-model in some MV-algebra,

already has a counter-model in [0, 1].
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Let us consider the tertium non datur equation:

x ∨ ¬x = 1 . (?)

Then (?) is not an identity over [0, 1]: the only evaluations into [0, 1]

that satisfy (?) are x 7→ 0 and x 7→ 1 | the Boolean, or classical,

evaluations.

Here is a 2-variable generalisation of the tertium non datur term:

x ∨ ¬x ∨ y ∨ ¬y = 1 (??)

The evaluations of x and y into [0, 1], i.e. the pairs (r , s) ∈ [0, 1]2,

that satisfy (??), are precisely the points lying on the boundary of the

unit square:

The boundary of the unit square.
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X ∨ ¬X = 1 (?)

The boundary of the unit interval.

X ∨ ¬X ∨Y ∨ ¬Y = 1 (??)

The boundary of the unit square.
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The twisted cubic: V ({y − x 2, z − x 3})

(Parametrisation: t 7−→ (t , t2, t3).)
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Rational polyhedra

Leonardo's Truncated Icosahedron

(Illustration for Luca Pacioli's The Divine Proportion, 1509.)
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We consider �nitely presented MV-algebras, i.e. those of the

form F n /θ, with θ a �nitely generated congruence (ideal). The

assumption on θ is far from immaterial: there is no Hilbert's

Basis Theorem for MV-algebras.

The convex hull of a set P ⊆ Rn , written conv P , is the

collection of all convex combinations of elements of P :

conv P =

{
m∑
i=1

rivi | vi ∈ P and 0 6 ri ∈ R with

m∑
i=1

ri = 1

}
.

Such a set is convex if P = conv P .

The set P is called:

a polytope, if there is a �nite F ⊆ Rn with P = conv F ;

a rational polytope, if there is a �nite F ⊆ Qn with

P = conv F .
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We consider �nitely presented MV-algebras, i.e. those of the

form F n /θ, with θ a �nitely generated congruence (ideal). The

assumption on θ is far from immaterial: there is no Hilbert's

Basis Theorem for MV-algebras.

The convex hull of a set P ⊆ Rn , written conv P , is the

collection of all convex combinations of elements of P :
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A polytope in R2.
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A polytope in R2 (a simplex).
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A (compact) polyhedron in Rn is a union of �nitely many

polytopes in Rn .

A polyhedron in R2.

Similarly, a rational polyhedron is a union of �nitely many

rational polytopes.
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Let P ⊆ Rn be a rational polyhedron. A continuous function

f : P → R is a Z-map if the following hold.

1 There is a �nite set {L1, . . . ,Lm } of a�ne linear functions

Li : Rn → R such that f (x ) = Lix
(x ) for some 1 6 ix 6 m .

2 Each Li can be written as a linear polynomial with integer

coe�cients.

A piecewise linear function [0, 1]→ R.

A map F : P ⊆ Rn → Q ⊆ Rm between polyhedra always is of the

form F = (f1, . . . , fm), fi : P → R. Then F is a Z-map if each one of

its scalar components fi is.
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Rational polyhedra are precisely the subsets of Rn that are de�nable

by a term in the language of MV-algebras; and Z-maps are precisely

the continuous transformations that are de�nable by tuples of terms

in that language.

Stone-type duality for finitely presented MV-algebras

The category of �nitely presented MV-algebras, and their

homomorphisms, is equivalent to the opposite of the category of

rational polyhedra, and the Z-maps amongst them.

V.M. & L. Spada, Duality, projectivity, and uni�cation in  Lukasiewicz

logic and MV-algebras, Annals of Pure and Applied Logic, 2012.

Polyop
QMVfp
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From MV-algebras to rational polyhedra: Given

F n /〈τ(x1, . . . , xn)〉, the associated rational polyhedron V (τ) is

the set of n-tuples (r1, . . . , rn) ∈ [0, 1]n such that

τ(r1, . . . , rn) = 0 in [0, 1].

From rational polyhedra to MV-algebras: Given P ⊆ Rn , the

collection ∇ (P) of all Z-maps P → [0, 1] is a (�nitely

presentable) MV-algebra under the pointwise operation

inherited from [0, 1].

Example. If τ(x1, . . . , xn) is identically equal to 0 in any

MV-algebra, then it generates the trivial ideal {0}. In this case,

F n /〈τ〉 = F n , and V (τ) = [0, 1]n . Hence the duals of free

algebras are the unit cubes.

Remark. The subspace V (τ) ⊆ [0, 1]n homeomorphic to the maximal

spectral space of F n /〈τ〉, topologised by the (analogue of) the Zariski

topology. The MV-algebra ∇ (P) is the exact analogue for rational

polyhedra of the coordinate ring of an a�ne algebraic variety.
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Syntax: Equations, or Formul� | Algebraic

X ∨ ¬X = 1

X ∨ ¬X ∨Y ∨ ¬Y = 1

Semantics: Solutions, or Models | Geometrical
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X ∨ ¬X = 1

X ∨ ¬X ∨Y ∨ ¬Y = 1

Stone-type duality for finitely presented MV-algebras

Polyop

QMVfp
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StoneSpopBoolAlg
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In the thirties, Stone discovered that the set of maximal ideals of a

Boolean algebra carries a natural topology: open sets correspond to

arbitrary ideals. In the Introduction to his book on Stone spaces, P.

Johnstone writes:

Now this was a really bold idea. Although the

practitioners of abstract general topology [...] had by the

early thirties developed considerable expertise in the

construction of spaces with particular properties, the

motivation of the subject was still geometrical [...] and

(as far as I know) nobody had previously had the idea of

applying these techniques to the study of spaces

constructed from purely algebraic data.

The ensuing spaces are nowadays called Stone spaces. The clopen sets

| those sets which are both closed and open in the topology |

correspond to principal ideals/�lters, and hence to elements of the

algebra. Thus, the original algebra can be recovered from its space of

maximal ideals; Stone's construction is in fact a two-way road.
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The syntax-semantics dictionary.

Algebra, or Syntax. Topology, or Semantics.

Boolean algebra Stone (or Boolean) space

Homomorphism Continuous map

Finite Boolean algebra Finite set

Finite algebra homomorphism Function

Free n-gen. algebra {0, 1}n

Maximal ideal Point of Stone space

Ideal Closed subset of Stone space

Principal ideal Clopen subset of Stone space
...

...

StoneSpopBoolAlg
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The syntax-semantics dictionary.

Algebra, or Syntax. Geometry, or Semantics.

F.p. algebra Rational polyhedron

Homomorphism Z-map

F.p. subalgebra Continuous image by Z-map

F.p. quotient algebra Rational subpolyhedron

F.p. projective algebra Retract of cube by Z-maps

Free n-gen. algebra [0, 1]n

Maximal congruence Point of rational polyhedron

Intersection of maximal cong. Closed subset of rational polyhedron

Finite product A×B Finite disjoint union
...

...

Polyop

QMVfp
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Algebraic geometry General algebra

Ground �eld k A

k [x1, . . . , xn ] Fn

A�ne space kn An

Ideal of k [x1, . . . , xn ] Congruence on Fn

A�ne variety in kn Galois-�xed subset of An

Coord. ring k [xi ]/ I (V (S)) Quotient Fn/I (V (S))

Homomorphism of k -alg. V-homomorphism

Map of a�ne varieties Term-de�nable map

Nullstellensatz V.M. & L. Spada, 2012

co-Nullstellensatz ?

Maximal ideal Maximal congruence
...

...

V.M. and L. Spada, The Dual Adjunction between MV-algebras and

Tychono� spaces, Studia Logica 100, in memoriam Leo Esakia, 2012.

O. Caramello, V.M., and L. Spada, General a�ne adjunctions, and

Nullstellens�atze, preliminary arXiv version, 2014.
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Thank you for your attention.
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