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Introduction

1 1870–1920: early developments: Cantor, Baire Borel, Lebesgue,

Lusin, Suslin, Novikoff, . . .

2 1960–1990: the logicians’ contribution: Addison, Solovay, Martin,

Moschovakis, Kechris, Steel, Woodin, . . .

3 1990–now: interactions with other parts of mathematics: Kechris,

Louveau, Becker, Hjorth, . . .

For the most part, I will focus on parts 1 and 3.

Reference

A.S. Kechris

Classical Descriptive Set Theory
Springer 1995
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The product topology

If (Xi,Ti) are topological spaces, the product topology on X =
�

i∈I
Xi is

induced by the projections X � Xi, (xj)j∈I �→ xi. The basic open sets of�
i∈I

Xi are of the form

Ui1 × · · ·× Uin
×

�

i∈I\{i1,...,in}

Xi

where Uik
∈ Tik

, (k = 1, . . . , n). When I is a finite set or I is a countable

infinite set, then a basis for
�

i∈I
Xi has a particularly simple form: if

I = {i1, . . . , in}, then a basis is obtained by taking sets of the form

Ui1 × · · ·× Uin
with Uik

∈ Tik
, (k ∈ {1, . . . , n}); if I = N, then a basis is

obtained by taking sets of the form

U0 × · · ·× Un ×

�

i>n

Xi,

with Uk ∈ Tk, (k ≤ n). If Xk = X for all k, write X
N instead of

�
k

X.
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The product topology

A space is separable means that there is a countable dense set.

Proposition

The countable product of separable spaces is separable.

Proof.

For simplicity, take Xn = X, for all n, and let D ⊆ X be countable and

dense. Then
�
(xn)n ∈ D

N | (xn)n is eventually constant
�

is dense in

X
N
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The product topology

A space is metrizable if there is a metric which is compatible with the

topology; it is completely metrizable if the metric can be taken to be

complete.

Proposition

If the Xns are (completely) metrizable, then
�

n
Xn is (completely)

metrizable.

Proof.

Suppose dn is a (complete) metric on Xn. If needed, replace dn with

dn/(1 + dn) so that dn ≤ 1. Then

d
�
(xn)n, (yn)n

�
=

∞�

n=0

dn(xn, yn)

2n

is a compatible (complete) metric.
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Polish spaces

Definition

A topological space is Polish if it separable and completely metrizable.

There may be many different complete metrics witnessing that X is

Polish; if d is such a metric, then (X, d) is a Polish metric space.

The countable product of Polish spaces is Polish

A subset of a topological space is Gδ if it is of the form
�

n
Un with Un

open sets.

A subspace of a Polish space is Polish iff it is Gδ.
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Examples of Polish spaces

Rn, RN, any separable Banach space.

[0; 1], (0; 1), R \Q.

K(X) = {K ⊆ X | K is compact} with (X, d) Polish. The metric is

dH(K1,K2) = max(max {d(x,K2) | x ∈ K1} ,max {d(x,K1) | x ∈ K2})

where d(x,K) = min {d(x, y) | y ∈ K}. If D ⊆ X is countable dense,

then {F ⊆ D | F is finite} is dense in K(X).

K a compact metric space,

H(X) = {f | f : X → X is a homeomorphism}.

X Polish and P(X) = {µ | µ a Borel probability measure on X}.

Any countable set I with the discrete topology. Hence also I
N is

Polish.
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The Cantor and Baire spaces

If 2 = {0, 1} and N are given the discrete topology, then 2N the Cantor
space and NN the Baire space are Polish. The basic open sets are

the Ns with s a finite sequence

Ns = {(xn)n | ∀i < lh(s) (si = xi)}

In 2N, if s = 010, then Ns = {x ∈ 2N | s ⊆ x} is

��

0

01

010
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Trees

A space that has a basis formed by clopen sets is called totally
disconnected or zero-dimensional.
A tree on a set X is T ⊆ X

<N, a collection of finite strings of elements

from X, such that t ∈ T ∧ s ⊆ t ⇒ s ∈ T. For example

��

0 1

00 01 10 11

000 001 010 011 100 101 110 111

is the binary tree 2<N.

[T] = {(xn)n ∈ X
N | (x0, . . . , xn) ∈ T for all n ∈ ω} is the body of T. It is a

topological space with the basic open neighborhoods given by Ns.

[T] is compact iff T is finitely branching.
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Zero-dimensional spaces

Closed subsets of [T] are exactly of the form [S] with S a subtree of T.

The metric on [T] is given by d(x, y) = 2−n, where n is least such that

x(n) �= y(n).
This is an ultrametric, i.e. it satisfies

d(x, z) ≤ max(d(x, y), d(y, z))

In an ultrametric space, the open balls are clopen, that is they are

both open and closed and every point is the center.

An ultrametric space is zero-dimensional, that is it has a basis

consisting of clopen sets.

In particular, all this applies to the Cantor space 2N =
�
2<N� and to the

Baire space NN =
�
N<N�.
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The Cantor space

2N is homeomorphic to E1/3, the usual Cantor subsets of [0; 1], and to

Zp, the ring of the p-adic integers.

Theorem (Brower)

2N is the unique zero-dimensional compact separable space without
isolated points.

Theorem (Cantor)

If C is a closed subset of a Polish space, then either C is countable, or
else there is a continuous injective map j : 2N → C.

Theorem

Every nonempty compact metric space is the continuous surjective
image of 2N.
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The Cantor space

Proof.

If K �= ∅ is compact metric, then it is homeomorphic to a closed subset

C of [0; 1]N. The function

f : 2N → [0; 1], f (s) =
∞�

n=0

s(n)

2n+1

is a continuous surjection, hence (2N)N → [0; 1]N, (sk)k �→ (f (sk))k is a

continuous surjection. But (2N)N ≈ 2N, so we have a continuous

surjection 2N → [0; 1]N. Hence there is a closed set [T] ⊆ 2N that

subjects onto C. Construct a continuous surjection π : 2N → [T] so that

π is the identity on [T]: this yields the desired surjection.
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The Baire space

Theorem (Alexandroff-Urysohn)

NN is the unique zero-dimensional separable Polish space without
isolated points, such that the compact sets have empty interior.

Thus NN is far from being compact, in fact it is not even Kσ.

Theorem (Hurewicz)

A Polish space is either Kσ, i.e., countable union of compact spaces,
or else it contains a closed subset homeomorphic to NN.

Theorem

Every Polish space is the continuous injective image of some closed
subset of NN.

NN is homeomorphic to R \Q.
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Borel sets

A σ-algebra on a set X is a family S ⊆ P(X) closed under

complements, countable unions and intersections.

A measurable space is a pair (X,S) with S a σ-algebra on X.

The smallest σ-algebra containing all open subsets of a

topological space X is the family of Borel sets BOR(X).

A measurable space (X,S) is a standard Borel space if there is a

Polish topology on X such that S = BOR(X).

f : (X,S) → (Y, T ) is measurable if f
−1(A) ∈ S for all A ∈ T . When

dealing with standard Borel spaces, we say that f is Borel. A Borel

isomorphism between standard Borel spaces (X,S) and (Y, T ) is a

Borel isomorphism if it is a bijection and both f and f
−1 are

measurable.
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Borel isomorphisms

Theorem

Any two uncountable standard Borel spaces are Borel isomorphic. In
particular, any two Polish spaces are Borel isomorphic.

Example

F(X) = {F ⊆ X | F is closed} is standard Borel, with the Effros-Borel
σ-algebra EB(X) generated by the sets {C ∈ F(X) | C ∩ U �= ∅}, with U

open.

Clearly, if X is compact, then F(X) = K(X).
Let X be Polish:

K(X) is Borel in F(X),
the operation F(X)× F(X) → F(X), (F1,F2) �→ F1 ∪ F2 is Borel.

the operation F(X)× F(X) → F(X), (F1,F2) �→ F1 ∩ F2 is not Borel.
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Change of topology

Theorem

Let A ∈ BOR(X) with (X,T) a Polish space. Then there is a Polish
topology T� ⊇ T such that A is clopen in T�. Moreover T� can be taken
to be zero-dimensional.

Corollary

If (X,S) is standard Borel and A ∈ S then either A is countable, or else
there is a continuous injective map j : 2N → C.

Proof.

Suppose A is uncountable. Change the topology so that A is clopen (

in fact closed is enough): then A is Polish, so by Cantor’s theorem

there is a continuous j : 2N → A. Since the new topology is finer, then j

is still continuous with the older topology.
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The Borel hierarchy

If X is Polish let

Σ0
1 be the set of open subsets, and Π0

1 be the set of closed

subsets

Σ0
2 = Fσ be the collection of all sets of the form

�
n

Cn with Cn

closed, and Π0
2 = Gδ be the collection of all sets of the form

�
n

Un

with Un open,

Σ0
α be the collection of all sets of the form

�
n

An with

An ∈
�

β<αΠ
0
β, and Π0

α be the collection of all sets of the form�
n

An with An ∈
�

β<αΣ
0
β,

∆0
α

def
= Σ0

α ∩Π0
α, Σ0

α =
�

X \ A | A ∈ Π0
α

�
, and

BOR = Σ0
ω1

= Π0
ω1

= ∆0
ω1

=
�

α<ω1

Σ0
α =

�

α<ω1

Π0
α =

�

α<ω1

∆0
α.
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The Borel hierarchy

Σ0
1 Σ0

2 Σ0
α

⊆
⊆

⊆ ⊆

∆0
1 ∆0

2 · · · ∆0
α · · · · · ·

⊆
⊆

⊆ ⊆

Π0
1 Π0

2 Π0
α

A set is true Σ0
α if it is in Σ0

α \Π0
α = Σ0

α \∆0
α.

Examples

Q is true Σ0
2, hence R \Q is true Π0

2 (Baire category theorem).
�

x ∈ 2N×N | ∀n∃m∀k > m (x(n, k) = 0)
�

is true Π0
3.

c0 = {(xn)n ∈ RN | limn xn = 0} is true Π0
3.

C∞(S1) ⊂ C(S1,R) is true Π0
3.
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Property of Baire

Definition

X a topological space.

M ⊆ X is meager if M ⊆
�

n
Cn with Cn closed and with empty interior.

The complement of a meager set is comeager.
A ⊆ X has the property of Baire if A�U is meager, for some open set

U.

MGR is the collection of meager sets, and BP is the collection of all

sets with the property of Baire.

Theorem (Baire)

If X is completely metrizable or compact (in particular: if X is Polish),
then no non-empty open set is meager.

BP is a σ-algebra extending BOR.
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Projective sets

X Polish and A ⊆ X:

A is analytic or Σ1
1 if it is the continuous (or even Borel) image of a

Borel set. It is coanalytic or Π1
1 if X \ A ∈ Σ1

1.

A is Σ1
n+1 if it is the continuous (or even Borel) image of a Π1

n
set.

It is Π1
n+1 if X \ A ∈ Σ1

n+1.

∆1
n
= Σ1

n
∩Π1

n
and the projective sets are the elements of�

n
Σ1

n
=

�
n
Π1

n
=

�
n
∆1

n
.

Theorem

(Suslin) If A and B are disjoint Σ1
1, then there is a Borel set C such that

A ⊆ C and B ∩ C = ∅.
In particular: (Lusin) ∆1

1 = BOR.

Proposition

The continuous (or even Borel) injective image of a Borel set is Borel.
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The projective hierarchy

Σ1
1 Σ1

2 Σ1
n

⊆
⊆

⊆ ⊆

BOR = ∆1
1 ∆1

2 · · · ∆1
n

· · · · · ·
⊆

⊆
⊆ ⊆

Π1
1 Π1

2 Π1
n

A set is true Σ1
n

if it is in Σ1
n
\Π1

n
, and similarly for true Π1

n
.

Examples

If X is a separable Banach space and T ∈ L(X) then

spec(T) = {λ ∈ C | ∃x �= 0(T(x) = λx)} is Σ1
1 and bounded. Every

bounded Σ1
1 subset of C is of this form.

The set D ⊆ C([0; 1]) of all differentiable functions is true Π1
1.

{T ∈ L(c0) | spec(T) = S1} is true Π1
2.
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Foundational issues

Classical results

1 Every Σ1
1, and hence every Π1

1 has the property of Baire, and it is

Lebesgue measurable.

2 A Σ1
1 set is either countable (hence Fσ) or else it contains a copy

of Cantor, i.e. there is j : 2N → A injective and continuous.

Question

Do these properties hold for all projective sets?

Consistently false

(Gödel, 1938) In the constructible universe L there is a ∆1
2 set that is

not Lebesgue measurable and that does not have the Baire property,

and there is an uncountable Π1
1 set that does not contain a copy of the

Cantor set.
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Foundational issues

Consistently true (modulo modest large cardinals)

(Solovay 1965) There is a model of ZFC where all uncountable

projective sets are Lebesgue measurable, have the property of Baire,

and contain a copy of 2N.

True (modulo large cardinals)

If there is a measurable cardinal (Solovay, 1968) then all sets in

Σ1
2 ∪Π1

2 are Lebesgue measurable, Π1
1 ⊆ BP, and every uncountable

Π1
1 contains a copy of 2N.

If there are infinitely many Woodin cardinals (Martin-Steel 1988) all

uncountable projective sets are Lebesgue measurable, have the

property of Baire, and contain a copy of 2N.

Methods of logic, like recursion theory, forcing, large cardinals,

definability theory, and most importantly infinite games play a key role

here.
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Polish groups

Definition

A group G with a Polish topology such that (x, y) �→ xy
−1 is continuous

is a Polish group.

Rn, RN, separable Banach spaces, are examples of Polish groups.

Any metrizable group has a left-invariant metric d, that is

d(zx, zy) = d(x, y), and similarly a right-invariant metric. Abelian

groups have metrics which are both-sides invariant.

A Polish group has a complete metric, and a left-invariant one, but

needs not to have a complete and left-invariant metric. For example

S∞ =
�

f ∈ NN | f is a bijection
�

is a group, it is Gδ in NN hence it is a

Polish space, the usual metric d on NN is left-invariant, but not

complete. A complete metric on S∞ is given by

D(f , g) = d(f , g) + d(f−1, g
−1).
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Polish groups

Subgroups are closed

If G is Polish, H ≤ G, and H is Polish (i.e. Gδ), then H is closed.

Uniqueness of the topology

Suppose G is a group, and also a standard Borel space, and that

(x, y) �→ xy
−1 is Borel. Then there is at most one Polish topology that

makes G a Polish group.

Automatic continuity

Let f : G → H be a homomorphism of Polish group, and suppose it is

Baire measurable, i.e. the preimage of an open set is in BP. Then f is

continuous.
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The measure algebra

For X a standard Borel space and µ a Borel measure on X, the

measure algebra MALG(X) = BOR(X)/NULL is the Borel sets, modulo

µ-measure 0 sets. It is a Polish group with distance

d([A], [B]) = µ(A�B), and operation [A]+ [B] = [A�B].

Fact

MALG(X) does not depend on X or on µ, as long as µ(x) = 0 for all

x ∈ X.

In other words: the measure algebra on R with the Lebesgue measure

or on 2N with the coin-tossing measure are isomorphic.
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How to parametrize objects

Every compact metric space is homeomorphic to a closed

subspace of [0; 1]N. Hence K([0; 1]N) is the Polish space of all

compact metric spaces.

Every Polish space is homeomorphic to a closed subset of RN.

Hence F(RN) is the standard Borel space of all Polish spaces.

Every separable Banach space is homeomorphic to a closed

subspace of C [0; 1], the Banach space of all real valued

continuous functions on [0; 1]. The set B ⊆ F(C [0; 1]) of all

separable Banach space is Borel.

Every Polish group is (isomorphic to) a closed subgroup of

H([0; 1]N), the homeomorphisms of the Hilbert cube. The set

G ⊆ F(H([0; 1]N)) of all Polish groups is Borel.

A. Andretta (Torino) DST 09-05-2014 27 / 36



Equivalence relations

X a standard Borel space and E an equivalence relation on X which, as

a subset of X × X is Borel or projective of low level (analytic or

co-analytic).

Examples

=X equality on X is closed, hence Borel.

G Polish group, a : G × X → X a Borel action on a standard Borel

X. Then EG is Σ1
1: x EG y ⇔ ∃g ∈ G (a(g, x) = y).

Consider the relation of Turing equivalence on P(N) = 2N:

x =T y just in case x and y can be computed from each other.

Then =T is a Borel equivalence relation on 2N, each equivalence

class is countable, and the quotient D is the upper semi-lattice of

Turing degrees.
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Classification

If E is on X and F on Y then set

E ≤B F ⇔ ∃f : X → Y Borel ∀x1, x2 ∈ X (x1 E x2 ⇔ f (x1) F f (x2)) .

This implies that |X/E| ≤ |Y/F|.

Theorem (Silver)

E coanalytic equivalence relation on a Polish space X, then
either E ≤B =N, i.e. X/E is countable,
or else there is C ⊆ X homeomorphic to Cantor, of pairwise
E-inequivalent elements, hence =2N ≤B E.
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Countable Borel equivalence relations

Theorem (Feldman-Moore)

If E is a countable Borel equivalence relation on a standard Borel
space X, i.e. such that all equivalence classes are at most countable,
then E = EG with G a countable group acting in a Borel way on X.

Theorem (Jackson-Kechris-Louveau)

There is a countable Borel equivalence relation E∞ such that E ≤B E∞
for all countable Borel equivalence relations.

The structure of the ordering ≤B even on countable Borel equivalence

relations is extremely complex.

The study of Borel and analytic equivalence relations on standard

Borel spaces is one of the main topics in Descriptive Set Theory.
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The Wadge hierarchy

The Borel hierarchy on NN (and more generally on every

zero-dimensional Polish space, like 2N) admits an ultimate refinement.

For A,B ⊆ NN, say that A is Wadge-riducible to B, in symbols A ≤W B iff

A = f
−1(B), for some continuous f : NN

→ NN

A ≡W B ⇔ A ≤W B ≤W A and the equivalence classes are the Wadge

degrees.

· · · · · · · · · · · · · · · · · ·

cof=ω cof>ω

Infinite games play a key role here!
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Completeness

Let Γ be one of the Σ0
α,Π

0
α,Σ

1
n
,Π1

n
.

A set Y ⊆ NN is Γ-complete if it is in Γ and Z ≤W Y for all Z ⊆ NN in Γ.

Any Y ⊆ NN is true Γ if and only if it is Γ-complete.

This can be proved outright in ZFC if Γ ⊆ BOR, and assuming large

cardinals it holds also for projective sets.

Let X be an arbitrary Polish space. To show that A ⊆ X is true Γ it is

enough to show that

A is in Γ, and

there is a continuous f : X → NN and Γ-complete B ⊆ NN such that

A = f
−1(B).

By analogy, we will say that A is Γ-complete.
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The Lebesgue density theorem

Shameless self-promotion

This is joint work with Riccardo Camerlo (Politecnico di Torino)

λ Lebesgue measure on R, A ⊆ R measurable, let

Φ(A) = {x ∈ R | DA(x) = 1}

where DA(x) = limε→0+
λ(A∩(x−ε;x+ε))

2ε is the density of A at x.

The Lebesgue density theorem says that A ≡ Φ(A), meaning

λ(A�Φ(A)) = 0, hence Φ selects a representative in each equivalence

class of MALG.

The Lebesgue density theorem holds also for 2N with the coin-tossing
measure µ(Ns) = 2− lh s, and DA(x) = limn→∞ µ(A ∩ Nx�n) · 2n.

It is not hard to see that Φ(A) ∈ Π0
3.

Question

What is the exact complexity of Φ(A)?

A. Andretta (Torino) DST 09-05-2014 33 / 36



The complexity of Φ(A) when the ambient space is 2N

Theorem

For each Wadge degree up to Π0
3 there is an open (or a closed) set

B ⊆ 2N such that Φ(B) is in that degree, that is: for all A ⊆ 2N in Π0
3

there is B as above such that A ≡W Φ(B).

In particular, there is an open (or a closed) set B ⊆ 2N such that Φ(B) is

Π0
3-complete.

Theorem

The set of [A] ∈ MALG such that Φ(A) is true Π0
3 is comeager.

In fact, if C ⊆ 2N has positive measure and empty interior in 2N, then
Φ(C) is Π0

3-complete.
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The range of the density function

Work either in 2N: the set

ran DA =
�

r ∈ [0; 1] | ∃x ∈ 2N DA(x) = r

�

is Σ1
1. (Note that the limit DA(x) might not exist, for some x.)

Theorem

For every Σ1
1 set S ⊆ (0; 1) there is C ⊆ 2N compact of positive

measure such that ran(DC) = S ∪ {0, 1}.
{C ∈ K(2N) | ran(DC) = {0, 1}} is Π1

1-complete.
{C ∈ K(2N) | ran(DC) = [0; 1]} is Π1

2-complete.

2N is disconnected and there are sets A such that DA(x) is defined for

all x and takes values only 0 and 1.

This fails badly for Rn! Yet the theorem above still holds.
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