Ordered Algebras and Logic

George Metcalfe

Mathematical Institute, University of Bern

SGSLPS Meeting, Bern, May 2013

Logic and Mathematics

We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus de Morgan

Logic and Algebra

From the textbook definition of a group
A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that
(i) if $a \in G$, then $a \circ e=a$,
(ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1}=e$.

we can obtain a set of first-order sentences

$$
\begin{aligned}
& \Gamma=\{(\forall x)(\forall y)(\forall z)(x \circ(y \circ z) \approx(x \circ y) \circ z), \\
& \quad(\exists x)(\forall y)(y \circ x \approx y \&(\exists z)(y \circ z \approx x))\}
\end{aligned}
$$

and ask about its consequences, e.g.

$$
\begin{aligned}
& \Gamma=(\forall x)(\forall y)(\exists z)(x \circ z \approx y) \\
& \Gamma \vdash(\forall x)(\forall y)(\exists z)(x \circ z \approx y)
\end{aligned}
$$

or

Logic and Algebra

From the textbook definition of a group
A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that
(i) if $a \in G$, then $a \circ e=a$,
(ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1}=e$.
we can obtain a set of first-order sentences

$$
\begin{aligned}
\Gamma= & \{(\forall x)(\forall y)(\forall z)(x \circ(y \circ z) \approx(x \circ y) \circ z), \\
& \quad(\exists x)(\forall y)(y \circ x \approx y \&(\exists z)(y \circ z \approx x))\}
\end{aligned}
$$

and ask about its consequences, e.g.

Or

$$
\begin{gathered}
\Gamma \models(\forall x)(\forall y)(\exists z)(x \circ z \approx y) \\
\Gamma \vdash(\forall x)(\forall y)(\exists z)(x \circ z \approx y)
\end{gathered}
$$

Logic and Algebra

From the textbook definition of a group
A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that
(i) if $a \in G$, then $a \circ e=a$,
(ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1}=e$.
we can obtain a set of first-order sentences

$$
\begin{aligned}
\Gamma= & \{(\forall x)(\forall y)(\forall z)(x \circ(y \circ z) \approx(x \circ y) \circ z), \\
& \quad(\exists x)(\forall y)(y \circ x \approx y \&(\exists z)(y \circ z \approx x))\}
\end{aligned}
$$

and ask about its consequences, e.g.

$$
\ulcorner\vDash(\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?
$$

Or
$\Gamma \vdash(\forall x)(\forall y)(\exists z)(x \circ z \approx y)$

Logic and Algebra

From the textbook definition of a group
A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that
(i) if $a \in G$, then $a \circ e=a$,
(ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1}=e$.
we can obtain a set of first-order sentences

$$
\begin{aligned}
\Gamma= & \{(\forall x)(\forall y)(\forall z)(x \circ(y \circ z) \approx(x \circ y) \circ z), \\
& \quad(\exists x)(\forall y)(y \circ x \approx y \&(\exists z)(y \circ z \approx x))\}
\end{aligned}
$$

and ask about its consequences, e.g.

$$
\begin{array}{r}
\quad \Gamma \vDash(\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ? \\
\text { or } \quad \Gamma \vdash(\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?
\end{array}
$$

Today

This tutorial will consist of two parts:
(I) Consequence in Logic and Algebra
(II) Substructural Logics and Residuated Lattices.

Part I

Consequence in Logic and Algebra

A Brief History of Consequence: Categorical Syllogisms

Categorical syllogisms, as described by Aristotle in the Prior Analytics (c. 350 BC), consist of three parts: the major premise, the minor premise, and the conclusion.

For example:

A Brief History of Consequence: Categorical Syllogisms

Categorical syllogisms, as described by Aristotle in the Prior Analytics (c. 350 BC), consist of three parts: the major premise, the minor premise, and the conclusion.

For example:

Major premise: No homework is fun. Minor premise: Some reading is homework. Conclusion: Some reading is not fun.
(No M are P.)
(Some S are M.)
(Some S are not P.)

A Brief History of Consequence: Boolean Algebras

Boolean algebras originated in George Boole's An Investigation of the Laws of Thought (1865) and consist of a set B with binary operations \wedge, \vee, a unary operation ${ }^{\prime}$, and constants 0,1 .

Key examples include:
 - the two-element Boolean algebra (with $x^{\prime}=1-x$)

$$
(\{0,1\}, \text { min, max, }, 0,1)
$$

- power set algebras, for a set A (with $B^{\prime}=A \backslash B$)

$$
\left(\wp(A), \cap, U^{\prime}, \emptyset, A\right)
$$

A Brief History of Consequence: Boolean Algebras

Boolean algebras originated in George Boole's An Investigation of the Laws of Thought (1865) and consist of a set B with binary operations \wedge, \vee, a unary operation ${ }^{\prime}$, and constants 0,1 .

Key examples include:

- the two-element Boolean algebra (with $x^{\prime}=1-x$)

$$
\left(\{0,1\}, \min , \max ,{ }^{\prime}, 0,1\right)
$$

- power set algebras, for a set A (with $B^{\prime}=A \backslash B$)

$$
\left(\wp(A), \cap, \cup,{ }^{\prime}, \emptyset, A\right)
$$

A Brief History of Consequence: Boolean Algebras

Boolean algebras originated in George Boole's An Investigation of the Laws of Thought (1865) and consist of a set B with binary operations \wedge, \vee, a unary operation ${ }^{\prime}$, and constants 0,1 .

Key examples include:

- the two-element Boolean algebra (with $x^{\prime}=1-x$)

$$
\left(\{0,1\}, \min , \max ,{ }^{\prime}, 0,1\right)
$$

- power set algebras, for a set A (with $B^{\prime}=A \backslash B$)

$$
\left(\wp(A), \cap, \cup,^{\prime}, \emptyset, A\right)
$$

A Brief History of Consequence: Formal Systems

Formal systems for logical consequence (the predicate calculus) based on the notion of proof were developed by Frege, Hilbert, Bernays, Russell, Gentzen, and others (1879-1935).

$$
\Gamma \vdash \varphi \quad \text { "There is a proof of } \varphi \text { from } \Gamma . "
$$

A Brief History of Consequence: Semantics

A "truth-oriented" description of logical consequence was given by Alfred Tarski (1936) based on models: mathematical structures that provide interpretations for non-logical primitives of a formal language.

$$
\Gamma \models \varphi \quad \text { "If } \mathbf{A} \text { is a model of } \Gamma \text {, then } \mathbf{A} \text { is a model of } \varphi . "
$$

A Brief History of Consequence: Completeness

The equivalence of the semantic (truth) and syntactic (proof) approaches was established by Kurt Gödel in his 1929 doctoral dissertation, i.e.

$$
\ulcorner\vdash \varphi \quad \Leftrightarrow \quad\ulcorner\models \varphi
$$

Investigating Consequence

- A more abstract framework for investigating consequence is provided by Tarski's notion of a consequence relation.
- We consider here how consequence relations can be defined in terms of proof systems and classes of algebras.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the equivalence of consequence relations.
- As an example, we consider equivalent consequence relations for the class of lattices and a simple application.

Investigating Consequence

- A more abstract framework for investigating consequence is provided by Tarski's notion of a consequence relation.
- We consider here how consequence relations can be defined in terms of proof systems and classes of algebras.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the equivalence of consequence relations.
- As an example, we consider equivalent consequence relations for the class of lattices and a simple application.

Investigating Consequence

- A more abstract framework for investigating consequence is provided by Tarski's notion of a consequence relation.
- We consider here how consequence relations can be defined in terms of proof systems and classes of algebras.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the equivalence of consequence relations.
- As an example, we consider equivalent consequence relations for the class of lattices and a simple application.

Investigating Consequence

- A more abstract framework for investigating consequence is provided by Tarski's notion of a consequence relation.
- We consider here how consequence relations can be defined in terms of proof systems and classes of algebras.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the equivalence of consequence relations.
- As an example, we consider equivalent consequence relations for the class of lattices and a simple application.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash$ a implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
\vdash is called finitary if also
- $X \vdash$ a implies $Y \vdash$ a for some finite $Y \subseteq X$.

$$
\text { We write } X \vdash Y \text { when } X \vdash a \text { for all } a \in Y \text {. }
$$

Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash$ a implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
is called finitary if also
- $X \vdash$ a implies $Y \vdash$ a for some finite $Y \subseteq X$.

$$
\text { We write } X \vdash Y \text { when } X \vdash a \text { for all } a \in Y \text {. }
$$

Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
is called finitary if also
- $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

$$
\text { We write } X \vdash Y \text { when } X \vdash a \text { for all } a \in Y \text {. }
$$

Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
\vdash is called finitary if also
- $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.
Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
\vdash is called finitary if also
- $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash$ a for all $a \in Y$.
Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
\vdash is called finitary if also
- $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.
Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Consequence Relations

A consequence relation over a non-empty set A is a relation
$\vdash \subseteq \wp(A) \times A$ such that for all $a, b \in A$ and $X, Y \subseteq A$:

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup\{a\} \vdash b$ implies $X \vdash b$ (transitivity).
\vdash is called finitary if also
- $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.
Note that consequence relations over A are in 1-1 correspondence with consequence operators (closure operators) on the poset $(\wp(A), \subseteq)$.

Some Terminology

To talk about logics and classes of algebras, we need

- a language \mathcal{L} consisting of function symbols (or connectives) such as $\circ,{ }^{-1}, e, \wedge, \vee, \neg, 0,1$ with specified finite arities
- \mathcal{L}-algebras consisting of a set A together with functions f for each function symbol f of \mathcal{L}
- the set $\mathrm{Fm}_{\mathcal{L}}$ of \mathcal{L}-formulas $\varphi, \psi \ldots$ built from a countably infinite set of variables $x, y \ldots$ and the formula algebra $\mathrm{Fm}_{\mathcal{L}}$
- the set $\mathrm{Eq}_{\mathcal{L}}$ of \mathcal{L}-equations, written $\varphi \approx \psi$.

Some Terminology

To talk about logics and classes of algebras, we need

- a language \mathcal{L} consisting of function symbols (or connectives) such as $\circ,{ }^{-1}, e, \wedge, \vee, \neg, 0,1$ with specified finite arities
- \mathcal{L}-algebras consisting of a set A together with functions f^{A} for each function symbol f of \mathcal{L}
- the set $\mathrm{Fm}_{\mathcal{L}}$ of \mathcal{L}-formulas φ, ψ.... built from a countably infinite set of variables $x, y \ldots$ and the formula algebra $\mathrm{Fm}_{\mathcal{L}}$
- the set $\mathrm{Eq}_{\mathcal{L}}$ of \mathcal{L}-equations, written

Some Terminology

To talk about logics and classes of algebras, we need

- a language \mathcal{L} consisting of function symbols (or connectives) such as $\circ,^{-1}, e, \wedge, \vee, \neg, 0,1$ with specified finite arities
- \mathcal{L}-algebras consisting of a set A together with functions $f^{\mathbf{A}}$ for each function symbol f of \mathcal{L}
- the set $\mathrm{Fm}_{\mathcal{L}}$ of \mathcal{L}-formulas $\varphi, \psi \ldots$ built from a countably infinite set of variables $x, y \ldots$ and the formula algebra $\mathrm{Fm}_{\mathcal{L}}$
- the set $E q_{\mathcal{L}}$ of \mathcal{L}-equations, written

Some Terminology

To talk about logics and classes of algebras, we need

- a language \mathcal{L} consisting of function symbols (or connectives) such as $\circ,{ }^{-1}, e, \wedge, \vee, \neg, 0,1$ with specified finite arities
- \mathcal{L}-algebras consisting of a set A together with functions $f^{\mathbf{A}}$ for each function symbol f of \mathcal{L}
- the set $\mathrm{Fm}_{\mathcal{L}}$ of \mathcal{L}-formulas $\varphi, \psi \ldots$ built from a countably infinite set of variables $x, y \ldots$ and the formula algebra $\mathrm{Fm}_{\mathcal{L}}$
- the set $\mathrm{Eq}_{\mathcal{L}}$ of \mathcal{L}-equations, written

Some Terminology

To talk about logics and classes of algebras, we need

- a language \mathcal{L} consisting of function symbols (or connectives) such as $\circ,{ }^{-1}, e, \wedge, \vee, \neg, 0,1$ with specified finite arities
- \mathcal{L}-algebras consisting of a set A together with functions $f^{\mathbf{A}}$ for each function symbol f of \mathcal{L}
- the set $\mathrm{Fm}_{\mathcal{L}}$ of \mathcal{L}-formulas $\varphi, \psi \ldots$ built from a countably infinite set of variables $x, y \ldots$ and the formula algebra $\mathrm{Fm}_{\mathcal{L}}$
- the set $\mathrm{Eq}_{\mathcal{L}}$ of \mathcal{L}-equations, written $\varphi \approx \psi$.

A Proof System for Classical Logic

Let \mathcal{L} be a language with connectives $\wedge, \vee, \rightarrow, \neg, 0,1$ and define

$$
\Gamma \vdash_{\text {нСL }} \varphi
$$

when $\varphi \in \mathrm{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \mathrm{Fm}_{\mathcal{L}}$ using the (schematic) rules:

> Then $\vdash_{\text {нсL }}$ is a finitary consequence relation over $\mathrm{Fm}_{\mathcal{L}}$.

A Proof System for Classical Logic

Let \mathcal{L} be a language with connectives $\wedge, \vee, \rightarrow, \neg, 0,1$ and define

$$
\Gamma \vdash_{\text {HCL }} \varphi
$$

when $\varphi \in \mathrm{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \mathrm{Fm}_{\mathcal{L}}$ using the (schematic) rules:

A1. $\varphi \rightarrow(\psi \rightarrow \varphi)$
A2. $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi))$
A3. $\neg \neg \varphi \rightarrow \varphi$
A4. $\quad(\varphi \rightarrow \psi) \rightarrow((\varphi \rightarrow \neg \psi) \rightarrow \neg \varphi)$
A5. $\quad \varphi \rightarrow(\neg \varphi \rightarrow \psi)$
A6. $1 \rightarrow(\varphi \rightarrow \varphi)$
A7. $\quad(\varphi \rightarrow \psi) \rightarrow((\varphi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi \wedge \chi))$
A8. $\quad(\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi))$

$$
\frac{\varphi \varphi \rightarrow \psi}{\psi}(\mathrm{MP})
$$

A9. $\varphi \wedge \psi \rightarrow \varphi$
A10. $\varphi \wedge \psi \rightarrow \psi$
A11. $\varphi \rightarrow \varphi \vee \psi$
A12. $\psi \rightarrow \varphi \vee \psi$
A13. $\quad \neg 1 \rightarrow 0$
A14. $0 \rightarrow \neg 1$
A15. $\quad(\varphi \rightarrow \varphi) \rightarrow 1$

Then $\vdash^{\text {HcL }}$ is a finitary consequence relation over $\mathrm{Fm}_{\mathcal{L}}$.

A Proof System for Classical Logic

Let \mathcal{L} be a language with connectives $\wedge, \vee, \rightarrow, \neg, 0,1$ and define

$$
\Gamma \vdash_{\text {HCL }} \varphi
$$

when $\varphi \in \mathrm{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \mathrm{Fm}_{\mathcal{L}}$ using the (schematic) rules:

$$
\begin{array}{ll}
\text { A1. } & \varphi \rightarrow(\psi \rightarrow \varphi) \\
\text { A2. } & (\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi)) \\
\text { A3. } & \neg \neg \varphi \rightarrow \varphi \\
\text { A4. } & (\varphi \rightarrow \psi) \rightarrow((\varphi \rightarrow \neg \psi) \rightarrow \neg \varphi) \\
\text { A6. } & \varphi \rightarrow(\neg \varphi \rightarrow \psi) \\
\text { A7. } & (\varphi \rightarrow \psi \rightarrow \varphi) \rightarrow((\varphi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi \wedge \chi)) \\
\text { A8. } & (\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow(\varphi \vee \psi \rightarrow \chi)) \\
& \frac{\varphi \varphi \rightarrow \psi}{\psi}(\text { MP })
\end{array}
$$

Then $\vdash_{\text {нсL }}$ is a finitary consequence relation over $\mathrm{Fm}_{\mathcal{L}}$.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C .

We write $X \vdash_{c}$ a if there is a C-derivation of a from X.

Lemma

is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

> A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b
> - is either in X
> - or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C .

We write $X \vdash_{\mathrm{C}}$ a if there is a C-derivation of a from X.

Lemma

is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C .

We write $X \vdash_{\mathrm{C}}$ a if there is a C-derivation of a from X.

Lemma

is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C .

$$
\text { We write } X \vdash_{C} \text { a if there is a C-derivation of a from } X \text {. }
$$

Lemma

is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C .

We write $X \vdash_{\mathrm{C}}$ a if there is a C-derivation of a from X.

Lemma

is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C.

We write $X \vdash_{\mathrm{c}}$ a if there is a C-derivation of a from X.
\square
Lemma
is a finitary consequence relation over A.

Proof Systems

A rule for a set A is a set of ordered pairs $\left(\left\{a_{1}, \ldots, a_{n}\right\}, a\right)$ with $\left\{a_{1}, \ldots, a_{n}, a\right\} \subseteq A$, and a proof system C is a set of rules for A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_{1}, \ldots, b_{n} where $\left(\left\{b_{1}, \ldots, b_{n}\right\}, b\right)$ is a member of a rule of C.

We write $X \vdash_{\mathrm{c}}$ a if there is a C-derivation of a from X.

Lemma

\vdash_{C} is a finitary consequence relation over A.

Substitution-Invariance

\mathcal{L}-substitutions for a language \mathcal{L} can be defined as endomorphisms

$$
\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}
$$

and extended to \mathcal{L}-equations by

$$
\sigma(\varphi \approx \psi)=\sigma(\varphi) \approx \sigma(\psi) .
$$

A consequence relation \vdash over $\mathrm{Fm}_{\mathcal{L}}$ or $\mathrm{Eq}_{\mathcal{L}}$ satisfying
$\sigma(X) \vdash \sigma(a)$ for all \mathcal{L}-substitutions σ
is called substitution-invariant.

Substitution-Invariance

\mathcal{L}-substitutions for a language \mathcal{L} can be defined as endomorphisms

$$
\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}
$$

and extended to \mathcal{L}-equations by

$$
\sigma(\varphi \approx \psi)=\sigma(\varphi) \approx \sigma(\psi)
$$

A consequence relation \vdash over $\mathrm{Fm}_{\mathcal{L}}$ or $\mathrm{Eq}_{\mathcal{L}}$ satisfying
$\sigma(X) \vdash \sigma(a)$ for all \mathcal{L}-substitutions σ
is called substitution-invariant.

Substitution-Invariance

\mathcal{L}-substitutions for a language \mathcal{L} can be defined as endomorphisms

$$
\sigma: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{F m}_{\mathcal{L}}
$$

and extended to \mathcal{L}-equations by

$$
\sigma(\varphi \approx \psi)=\sigma(\varphi) \approx \sigma(\psi)
$$

A consequence relation \vdash over $\mathrm{Fm}_{\mathcal{L}}$ or $\mathrm{Eq}_{\mathcal{L}}$ satisfying

$$
X \vdash a \quad \Longrightarrow \quad \sigma(X) \vdash \sigma(a) \text { for all } \mathcal{L} \text {-substitutions } \sigma
$$

is called substitution-invariant.

Equational Consequence Relations

Given a class of \mathcal{L}-algebras \mathcal{K}, define for $\Sigma \cup\{\varphi \approx \psi\} \subseteq \mathrm{Eq}_{\mathcal{L}}$:

Lemma

> is a substitution-invariant consequence relation over Eq_{c}. Moreover, if \mathcal{K} is a variety (equational class), then $\vdash_{\mathcal{K}}$ is finitary.

Equational Consequence Relations

Given a class of \mathcal{L}-algebras \mathcal{K}, define for $\Sigma \cup\{\varphi \approx \psi\} \subseteq \mathrm{Eq}_{\mathcal{L}}$:

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi \Longleftrightarrow \quad \begin{gathered}
\text { "whenever the equations in } \Sigma \text { hold in } \\
\text { some } \mathbf{A} \in \mathcal{K}, \text { also } \varphi \approx \psi \text { holds in } \mathbf{A} \text { " } \\
\text { For each } \mathbf{A} \in \mathcal{K} \text { and } h: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{A} \\
h\left(\varphi^{\prime}\right)=h\left(\psi^{\prime}\right) \Longrightarrow h(\varphi)=h(\psi) . \\
\text { for all } \varphi^{\prime} \approx \psi^{\prime} \in \Sigma
\end{gathered}
$$

Lemma
 is a substitution-invariant consequence relation over $\mathrm{Eq}_{\mathcal{C}}$ Moreover, if \mathcal{K} is a variety (equational class), then $\vdash_{\mathcal{K}}$ is finitary.

Equational Consequence Relations

Given a class of \mathcal{L}-algebras \mathcal{K}, define for $\Sigma \cup\{\varphi \approx \psi\} \subseteq \mathrm{Eq}_{\mathcal{L}}$:

$$
\begin{gathered}
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi \Longleftrightarrow \quad \begin{array}{c}
\text { "whenever the equations in } \Sigma \text { hold in } \\
\text { some } \mathbf{A} \in \mathcal{K}, \text { also } \varphi \approx \psi \text { holds in } \mathbf{A} " \\
\text { For each } \mathbf{A} \in \mathcal{K} \text { and } h: \mathbf{F m}_{\mathcal{L}} \rightarrow \mathbf{A} \\
h\left(\varphi^{\prime}\right)=h\left(\psi^{\prime}\right) \Longrightarrow h(\varphi)=h(\psi) . \\
\text { for all } \varphi^{\prime} \approx \psi^{\prime} \in \Sigma
\end{array}
\end{gathered}
$$

Lemma

$\vdash_{\mathcal{K}}$ is a substitution-invariant consequence relation over $\mathrm{Eq}_{\mathcal{L}}$. Moreover, if \mathcal{K} is a variety (equational class), then $\vdash_{\mathcal{K}}$ is finitary.

Boolean Algebras

Recall that a Boolean algebra (in the same language as HCL) is an algebra $\mathbf{A}=(A, \wedge, \vee, \rightarrow, \neg, 0,1)$ such that

- $(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice
- $a \wedge \neg a=0$ and $a \vee \neg a=1$ for all $a \in A$
- $a \rightarrow b=\neg a \vee b$ for all $a, b \in A$.

Let $\mathcal{B A}$ be the (equational) class of all Boolean algebras.
 Then $\vdash_{\mathcal{B A}}$ is a finitary substitution-invariant consequence relation.

Boolean Algebras

Recall that a Boolean algebra (in the same language as HCL) is an algebra $\mathbf{A}=(A, \wedge, \vee, \rightarrow, \neg, 0,1)$ such that

- $(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice
- $a \wedge \neg a=0$ and $a \vee \neg a=1$ for all $a \in A$
- $a \rightarrow b=\neg a \vee b$ for all $a, b \in A$.

Let $\mathcal{B A}$ be the (equational) class of all Boolean algebras. Then $\vdash_{\mathcal{B A}}$ is a finitary substitution-invariant consequence relation.

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

$$
\Gamma \vdash_{\text {HCL }} \varphi \quad \Longleftrightarrow \tau(\Gamma) \vdash_{\mathcal{B A}} \tau(\varphi)
$$

We say that $\mathcal{B A}$ is an "equivalent algebraic semantics" for \vdash_{HCL}.

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

$$
\begin{aligned}
\Gamma \vdash_{\text {НСL }} \varphi & \Longleftrightarrow \tau(\Gamma) \vdash_{\mathcal{B A}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{B A}} \varphi \approx \psi & \Longleftrightarrow \rho(\Sigma) \vdash_{\text {НСL }} \rho(\varphi \approx \psi)
\end{aligned}
$$

We say that $\mathcal{B A}$ is an "equivalent algebraic semantics" for $\vdash_{\text {нСL }}$.

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

$$
\begin{array}{rll}
\Gamma \vdash_{\text {НСL }} \varphi & \Longleftrightarrow & \tau(\Gamma) \vdash_{\mathcal{B A}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{B A}} \varphi \approx \psi & \Longleftrightarrow & \rho(\Sigma) \vdash_{\text {НСL }} \rho(\varphi \approx \psi) \\
\varphi \vdash_{\text {НСL }} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\text {НСL }} \varphi
\end{array}
$$

We say that $\mathcal{B A}$ is an "equivalent algebraic semantics" for \vdash_{HCL}.

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

$$
\begin{array}{rll}
\Gamma \vdash_{\text {HCL }} \varphi & \Longleftrightarrow & \tau(\Gamma) \vdash_{\mathcal{B A}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{B A}} \varphi \approx \psi & \Longleftrightarrow & \rho(\Sigma) \vdash_{\text {HCL }} \rho(\varphi \approx \psi) \\
\varphi \vdash_{\text {HCL }} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\text {HCL }} \varphi \\
\varphi \approx \psi \vdash_{\mathcal{B A}} \tau(\rho(\varphi \approx \psi)) & \& & \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B A}} \varphi \approx \psi .
\end{array}
$$

We say that $\mathcal{B A}$ is an "equivalent algebraic semantics" for $\vdash_{\text {нСL }}$.

Equivalence of \vdash_{HCL} and $\vdash_{B A}$

We translate between formulas and equations using "transformers"

$$
\tau(\varphi)=\{\varphi \approx 1\} \quad \text { and } \quad \rho(\varphi \approx \psi)=\{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}
$$

and obtain

$$
\begin{array}{rll}
\Gamma \vdash_{\text {HCL }} \varphi & \Longleftrightarrow & \tau(\Gamma) \vdash_{\mathcal{B A}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{B A}} \varphi \approx \psi & \Longleftrightarrow & \rho(\Sigma) \vdash_{\text {HCL }} \rho(\varphi \approx \psi) \\
\varphi \vdash_{\text {HCL }} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\text {HCL }} \varphi \\
\varphi \approx \psi \vdash_{\mathcal{B A}} \tau(\rho(\varphi \approx \psi)) & \& & \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B A}} \varphi \approx \psi .
\end{array}
$$

We say that $\mathcal{B A}$ is an "equivalent algebraic semantics" for \vdash_{HCL}.

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \operatorname{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

$$
\Gamma \vdash_{\mathrm{L}} \varphi \quad \Longleftrightarrow \quad \tau(\Gamma) \vdash_{\mathcal{K}} \tau(\varphi)
$$

[^0]
Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

$$
\begin{aligned}
\Gamma \vdash_{\mathrm{L}} \varphi & \Longleftrightarrow \tau(\Gamma) \vdash_{\mathcal{K}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi & \Longleftrightarrow \rho(\Sigma) \vdash_{\mathrm{L}} \rho(\varphi \approx \psi)
\end{aligned}
$$

\mathcal{K} is called an equivalent algebraic semantics for \vdash_{L}

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

$$
\begin{array}{rll}
\Gamma \vdash_{\mathrm{L}} \varphi & \Longleftrightarrow & \tau(\Gamma) \vdash_{\mathcal{K}} \tau(\varphi) \\
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi & \Longleftrightarrow & \rho(\Sigma) \vdash_{\mathrm{L}} \rho(\varphi \approx \psi) \\
\varphi \vdash_{\mathrm{L}} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\mathrm{L}} \varphi
\end{array}
$$

\mathcal{K} is called an equivalent algebraic semantics for \vdash

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

$$
\begin{aligned}
& \Gamma \vdash_{\mathrm{L}} \varphi \Longleftrightarrow \\
& \Sigma(\Gamma) \vdash_{\mathcal{K}} \tau(\varphi) \\
& \varphi \vdash_{\mathcal{K}} \varphi \approx \psi \Longleftrightarrow \\
& \varphi \vdash_{\mathrm{L}} \rho(\tau(\varphi)) \& \\
& \varphi \approx \psi \vdash_{\mathrm{L}} \rho(\varphi \approx \psi) \\
& \rho(\tau(\varphi)) \vdash_{\mathrm{L}} \varphi \\
& \mathcal{K}(\rho(\varphi \approx \psi)) \&
\end{aligned} \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{K}} \varphi \approx \psi .
$$

\mathcal{K} is called an equivalent algebraic semantics for \vdash_{L}

Algebraizable Logics

A substitution-invariant consequence relation \vdash_{L} over $\mathrm{Fm}_{\mathcal{L}}$ is called algebraizable with respect to a class of \mathcal{L}-algebras \mathcal{K} if there are maps

$$
\tau: \mathrm{Fm}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Eq}_{\mathcal{L}}\right) \quad \text { and } \quad \rho: \mathrm{Eq}_{\mathcal{L}} \rightarrow \wp\left(\mathrm{Fm}_{\mathcal{L}}\right)
$$

such that

$$
\begin{aligned}
& \Gamma \vdash_{\mathrm{L}} \varphi \Longleftrightarrow \\
& \Sigma(\Gamma) \vdash_{\mathcal{K}} \tau(\varphi) \\
& \Sigma \vdash_{\mathcal{K}} \varphi \approx \psi \Longleftrightarrow \\
& \varphi \vdash_{\mathrm{L}} \rho(\tau(\varphi)) \& \\
& \varphi \approx \psi \vdash_{\mathrm{L}} \rho(\varphi \approx \psi) \\
& \rho(\tau(\varphi)) \vdash_{\mathrm{L}} \varphi \\
& \mathcal{K} \tau(\rho(\varphi \approx \psi)) \\
& \& \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{K}} \varphi \approx \psi
\end{aligned}
$$

\mathcal{K} is called an equivalent algebraic semantics for \vdash_{L}.

Examples

Logic	Equivalent algebraic semantics
Classical logic	Boolean algebras
Intuitionistic logic	Heyting algebras
Modal logics	Boolean algebras with operators
Łukasiewicz logic	MV-algebras
	\vdots
BCI logic	not algebraizable!

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

$$
\tau: A_{1} \rightarrow \wp\left(A_{2}\right) \quad \text { and } \quad \rho: A_{2} \rightarrow \wp\left(A_{1}\right)
$$

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

$$
\tau: A_{1} \rightarrow \wp\left(A_{2}\right) \quad \text { and } \quad \rho: A_{2} \rightarrow \wp\left(A_{1}\right)
$$

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

$$
X \vdash_{1} a \quad \Longleftrightarrow \quad \tau(X) \vdash_{2} \tau(a)
$$

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

$$
\tau: A_{1} \rightarrow \wp\left(A_{2}\right) \quad \text { and } \quad \rho: A_{2} \rightarrow \wp\left(A_{1}\right)
$$

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

$$
\begin{array}{lll}
X \vdash_{1} a & \Longleftrightarrow & \tau(X) \vdash_{2} \tau(a) \\
Y \vdash_{2} b & \Longleftrightarrow & \rho(Y) \vdash_{1} \rho(b)
\end{array}
$$

$$
a \vdash_{1} \rho(\tau(a))
$$

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

$$
\tau: A_{1} \rightarrow \wp\left(A_{2}\right) \quad \text { and } \quad \rho: A_{2} \rightarrow \wp\left(A_{1}\right)
$$

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

$$
\begin{array}{rcc}
X \vdash_{1} a & \Longleftrightarrow & \tau(X) \vdash_{2} \tau(a) \\
Y \vdash_{2} b & \Longleftrightarrow & \rho(Y) \vdash_{1} \rho(b) \\
\mathbf{a} \vdash_{1} \rho(\tau(a)) & \& & \rho(\tau(a)) \vdash_{1} a \\
b \vdash_{2} \tau(\rho(b)) & \& & \tau(\rho(b)) \vdash_{2} b .
\end{array}
$$

A More Abstract Perspective

Let \vdash_{1}, \vdash_{2} be consequence relations over the sets A_{1}, A_{2}, respectively. We say that \vdash_{1} and \vdash_{2} are similar if there exist maps

$$
\tau: A_{1} \rightarrow \wp\left(A_{2}\right) \quad \text { and } \quad \rho: A_{2} \rightarrow \wp\left(A_{1}\right)
$$

such that for all $X \cup\{a\} \subseteq A_{1}$ and $Y \cup\{b\} \subseteq A_{2}$:

$$
\begin{array}{rcc}
X \vdash_{1} a & \Longleftrightarrow & \tau(X) \vdash_{2} \tau(a) \\
Y \vdash_{2} b & \Longleftrightarrow & \rho(Y) \vdash_{1} \rho(b) \\
a \vdash_{1} \rho(\tau(a)) & \& & \rho(\tau(a)) \vdash_{1} a \\
b \vdash_{2} \tau(\rho(b)) & \& & \tau(\rho(b)) \vdash_{2} b .
\end{array}
$$

Action-Invariance

A non-empty set A is called an \mathbf{M}-set if there exists a monoid

$$
\mathbf{M}=(M, \circ, 1)
$$

and an operation

such that for all $\sigma_{1}, \sigma_{2} \in M$ and $a \in A$:

$$
\left(\sigma_{1} \circ \sigma_{2}\right) \star a=\sigma_{1} \star\left(\sigma_{2} \star a\right) .
$$

A consequence relation \vdash over A is action-invariant if for all $\sigma \in M$:

Action-Invariance

A non-empty set A is called an M-set if there exists a monoid

$$
\mathbf{M}=(M, \circ, 1)
$$

and an operation

$$
\star: M \times A \rightarrow A
$$

such that for all $\sigma_{1}, \sigma_{2} \in M$ and $a \in A$:

$$
\left(\sigma_{1} \circ \sigma_{2}\right) \star \boldsymbol{a}=\sigma_{1} \star\left(\sigma_{2} \star \boldsymbol{a}\right) .
$$

A consequence relation \vdash over A is action-invariant if for all $\sigma \in M$:

Action-Invariance

A non-empty set A is called an \mathbf{M}-set if there exists a monoid

$$
\mathbf{M}=(M, \circ, 1)
$$

and an operation

$$
\star: M \times A \rightarrow A
$$

such that for all $\sigma_{1}, \sigma_{2} \in M$ and $a \in A$:

$$
\left(\sigma_{1} \circ \sigma_{2}\right) \star a=\sigma_{1} \star\left(\sigma_{2} \star a\right)
$$

A consequence relation \vdash over A is action-invariant if for all $\sigma \in M$:

$$
X \vdash a \quad \Longrightarrow \quad \sigma \star X \vdash \sigma \star a .
$$

Equivalence

Let \vdash_{1} and \vdash_{2} be action-invariant consequence relations over \mathbf{M}-sets A_{1} and A_{2}, respectively.

We say that \vdash_{1} and \vdash_{2} are equivalent if

- \vdash_{1} and \vdash_{2} are similar with transformers τ and ρ
- τ can be extended to an action-invariant man

i.e., for every $\sigma \in M$ and $X \subseteq A_{1}$

- ρ can be extended to an action-invariant map

Equivalence

Let \vdash_{1} and \vdash_{2} be action-invariant consequence relations over \mathbf{M}-sets A_{1} and A_{2}, respectively.

We say that \vdash_{1} and \vdash_{2} are equivalent if

- \vdash_{1} and \vdash_{2} are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

i.e., for every $\sigma \in M$ and $X \subseteq A_{1}$
- ρ can be extended to an action-invariant map

Equivalence

Let \vdash_{1} and \vdash_{2} be action-invariant consequence relations over \mathbf{M}-sets A_{1} and A_{2}, respectively.

We say that \vdash_{1} and \vdash_{2} are equivalent if

- \vdash_{1} and \vdash_{2} are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$
\wp\left(A_{1}\right) \rightarrow \wp\left(A_{2}\right)
$$

i.e., for every $\sigma \in M$ and $X \subseteq A_{1}$

- ρ can be extended to an action-invariant map

Equivalence

Let \vdash_{1} and \vdash_{2} be action-invariant consequence relations over \mathbf{M}-sets A_{1} and A_{2}, respectively.

We say that \vdash_{1} and \vdash_{2} are equivalent if

- \vdash_{1} and \vdash_{2} are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$
\tau^{*}: \wp\left(A_{1}\right) \rightarrow \wp\left(A_{2}\right)
$$

i.e., for every $\sigma \in M$ and $X \subseteq A_{1}$

$$
\sigma \star \tau(X)=\tau(\sigma \star X)
$$

- ρ can be extended to an action-invariant map

$$
\rho^{*}: \wp\left(A_{2}\right) \rightarrow \wp\left(A_{2}\right)
$$

Equivalence

Let \vdash_{1} and \vdash_{2} be action-invariant consequence relations over \mathbf{M}-sets A_{1} and A_{2}, respectively.

We say that \vdash_{1} and \vdash_{2} are equivalent if

- \vdash_{1} and \vdash_{2} are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$
\tau^{*}: \wp\left(A_{1}\right) \rightarrow \wp\left(A_{2}\right)
$$

i.e., for every $\sigma \in M$ and $X \subseteq A_{1}$

$$
\sigma \star \tau(X)=\tau(\sigma \star X)
$$

- ρ can be extended to an action-invariant map

$$
\rho^{*}: \wp\left(A_{2}\right) \rightarrow \wp\left(A_{2}\right) .
$$

References

W. J. Blok and D. Pigozzi. Algebraizable logics. Memoirs of the American Mathematical Society 396, volume 77, 1989.
J. Czelakowski. Protoalgebraic Logics.

Trends in Logic, volume 10, Kluwer, 2001.
J. M. Font, R. Jansana, and D. Pigozzi. A survey of abstract algebraic logic. Studia Logica, 74(1-2):13-97, 2003.
N. Galatos and C. Tsinakis. Equivalence of consequence relations: an order-theoretic and categorical perspective. Journal of Symbolic Logic 74(3): 780-210, 2009.

Lattices

Recall that a lattice is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \vee y$: the least upper bound (join) of x and y
or, alternatively, an algebra (L, \wedge, \vee) satisfying
where $x \leq y$ stands for $x \wedge y \approx x$.
The class $\mathcal{L} \mathcal{T}$ of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation $\vdash_{\text {cAT }}$.

Lattices

Recall that a lattice is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \vee y$: the least upper bound (join) of x and y or, alternatively, an algebra (L, \wedge, \vee) satisfying

$$
\begin{array}{rlrl}
x \vee(y \vee z) & \approx(x \vee y) \vee z & x \wedge(y \wedge z) & \approx(x \wedge y) \wedge z \\
x \wedge y & \approx y \wedge x & x \vee y & \approx y \vee x \\
x \wedge(x \vee y) & \approx x & x \vee(x \wedge y) & \approx x
\end{array}
$$

where $x \leq y$ stands for $x \wedge y \approx x$.
The class $\mathcal{L A T}$ of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation

Lattices

Recall that a lattice is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \vee y$: the least upper bound (join) of x and y or, alternatively, an algebra (L, \wedge, \vee) satisfying

$$
\begin{array}{rlrl}
x \vee(y \vee z) & \approx(x \vee y) \vee z & x \wedge(y \wedge z) & \approx(x \wedge y) \wedge z \\
x \wedge y & \approx y \wedge x & x \vee y & \approx y \vee x \\
x \wedge(x \vee y) & \approx x & x \vee(x \wedge y) & \approx x
\end{array}
$$

where $x \leq y$ stands for $x \wedge y \approx x$.
The class $\mathcal{L A} \mathcal{T}$ of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation $\vdash_{\mathcal{L A} \mathcal{T}}$.

A Proof System Lat for Lattices

Axioms

$\overline{\varphi \leq \varphi}^{(\text {(D) })}$

Left operational rules

Right operational rules

A Proof System Lat for Lattices

Axioms

$$
\overline{\varphi \leq \varphi}
$$

Left operational rules
$\frac{\varphi_{1} \leq \psi}{\varphi_{1} \wedge \varphi_{2} \leq \psi}(\wedge \Rightarrow)_{1}$
Right operational rules

$$
\frac{\psi \leq \varphi_{1}}{\psi \leq \varphi_{1} \vee \varphi_{2}}(\Rightarrow \vee)_{1}
$$

$$
\frac{\varphi_{2} \leq \psi}{\varphi_{1} \wedge \varphi_{2} \leq \psi}(\wedge \Rightarrow)_{2}
$$

$$
\frac{\psi \leq \varphi_{2}}{\psi \leq \varphi_{1} \vee \varphi_{2}}(\Rightarrow \vee)_{2}
$$

$$
\frac{\varphi_{1} \leq \psi \quad \varphi_{2} \leq \psi}{\varphi_{1} \vee \varphi_{2} \leq \psi}(\vee \Rightarrow)
$$

$$
\frac{\psi \leq \varphi_{1} \quad \psi \leq \varphi_{2}}{\psi \leq \varphi_{1} \wedge \varphi_{2}}(\Rightarrow \wedge)
$$

A Proof System Lat for Lattices

Axioms

$$
\begin{equation*}
\overline{\varphi \leq \varphi} \tag{ID}
\end{equation*}
$$

Left operational rules

$$
\frac{\varphi_{1} \leq \psi}{\varphi_{1} \wedge \varphi_{2} \leq \psi}(\wedge \Rightarrow)_{1}
$$

$$
\frac{\varphi_{2} \leq \psi}{\varphi_{1} \wedge \varphi_{2} \leq \psi}(\wedge \Rightarrow)_{2}
$$

$$
\frac{\varphi_{1} \leq \psi \quad \varphi_{2} \leq \psi}{\varphi_{1} \vee \varphi_{2} \leq \psi}(\vee \Rightarrow)
$$

Cut rule

$$
\frac{\varphi \leq \chi \quad \chi \leq \psi}{\varphi \leq \psi}
$$

Right operational rules

$$
\frac{\psi \leq \varphi_{1}}{\psi \leq \varphi_{1} \vee \varphi_{2}}(\Rightarrow \vee)_{1}
$$

$$
\frac{\psi \leq \varphi_{2}}{\psi \leq \varphi_{1} \vee \varphi_{2}}(\Rightarrow \vee)_{2}
$$

$$
\frac{\psi \leq \varphi_{1} \quad \psi \leq \varphi_{2}}{\psi \leq \varphi_{1} \wedge \varphi_{2}}(\Rightarrow \wedge)
$$

Derivations

Lat-derivations are finite trees labelled with inequations;

Derivations

Lat-derivations are finite trees labelled with inequations; e.g.

Equivalence of $\vdash_{\text {Lat }}$ and $\vdash_{\text {CAT }}$

Theorem

$\vdash_{\text {Lat }}$ and $\vdash_{\text {LAT }}$ are equivalent with transformers defined by

$$
\begin{aligned}
\tau(\varphi \approx \psi) & =\{\varphi \leq \psi, \psi \leq \varphi\} \\
\rho(\varphi \leq \psi) & =\{\varphi \wedge \psi \approx \varphi\} .
\end{aligned}
$$

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.

(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by
Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT), i.e., an equivalence relation. In fact, Θ is a congruence on Fm. E.g., if $\left(\varphi_{1}, \psi_{1}\right) \in \Theta$ and $\left(\varphi_{2}, \psi_{2}\right) \in \Theta$, then $\left(\varphi_{1} \wedge \varphi_{2}, \psi_{1} \wedge \psi_{2}\right) \in \Theta$ using

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.
(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by
Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT), i.e., an equivalence relation. In fact, Θ is a congruence on Fm. E.g., if $\left(\varphi_{1}, \psi_{1}\right) \in \Theta$ and $\left(\varphi_{2}, \psi_{2}\right) \in \Theta$, then $\left(\varphi_{1} \wedge \varphi_{2}, \psi_{1} \wedge \psi_{2}\right) \in \Theta$ using

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.
(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$
(\varphi, \psi) \in \Theta \quad \Leftrightarrow \quad\left(\Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi \quad \text { and } \quad \Sigma \vdash_{\mathrm{Lat}} \psi \leq \varphi\right)
$$

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.
(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$
(\varphi, \psi) \in \Theta \quad \Leftrightarrow \quad\left(\Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi \quad \text { and } \quad \Sigma \vdash_{\text {Lat }} \psi \leq \varphi\right)
$$

Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT), i.e., an equivalence relation.

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.
(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$
(\varphi, \psi) \in \Theta \quad \Leftrightarrow \quad\left(\Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi \quad \text { and } \quad \Sigma \vdash_{\text {Lat }} \psi \leq \varphi\right)
$$

Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT), i.e., an equivalence relation. In fact, Θ is a congruence on Fm. E.g., if $\left(\varphi_{1}, \psi_{1}\right) \in \Theta$ and $\left(\varphi_{2}, \psi_{2}\right) \in \Theta$, then $\left(\varphi_{1} \wedge \varphi_{2}, \psi_{1} \wedge \psi_{2}\right) \in \Theta$ using

Proof Sketch

It suffices to show that for any set of inequations $\Sigma \cup\{\varphi \leq \psi\}$:

$$
\Sigma \vdash_{\text {Lat }} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{L A T}} \varphi \leq \psi
$$

(\Rightarrow) By induction on the height of a derivation in Lat.
(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$
(\varphi, \psi) \in \Theta \quad \Leftrightarrow \quad\left(\Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi \quad \text { and } \quad \Sigma \vdash_{\text {Lat }} \psi \leq \varphi\right)
$$

Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT), i.e., an equivalence relation. In fact, Θ is a congruence on Fm. E.g., if $\left(\varphi_{1}, \psi_{1}\right) \in \Theta$ and $\left(\varphi_{2}, \psi_{2}\right) \in \Theta$, then $\left(\varphi_{1} \wedge \varphi_{2}, \psi_{1} \wedge \psi_{2}\right) \in \Theta$ using

$$
\frac{\frac{\vdots}{\varphi_{1} \leq \psi_{1}}}{\frac{\varphi_{1} \wedge \varphi_{2} \leq \psi_{1}}{\varphi_{1} \wedge \varphi_{2} \leq \psi_{1} \wedge \psi_{2}}(\wedge \Rightarrow)_{1}} \frac{\frac{\vdots}{\varphi_{2} \leq \psi_{2}}}{(\wedge \Rightarrow)_{2}}(\Rightarrow) \frac{\frac{\vdots}{\psi_{1} \leq \varphi_{1}}}{(\Rightarrow \wedge)}(\wedge \Rightarrow)_{1} \frac{\frac{\psi_{2} \leq \varphi_{2}}{\psi_{1} \wedge \psi_{2} \leq \varphi_{2}}}{(\wedge \Rightarrow)_{2}}(\Rightarrow \wedge)
$$

Proof Sketch

Moreover, $\mathbf{F m} / \Theta$ is a lattice. E.g., commutativity of $\Lambda^{\mathrm{Fm}} / \Theta$ follows from

Proof Sketch

Moreover, Fm/ Θ is a lattice. E.g., commutativity of $\wedge^{\mathbf{F m} / \Theta}$ follows from

$$
\frac{\frac{\overline{\psi \leq \psi}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge}}(\wedge \Rightarrow)_{2} \frac{\overline{\varphi \leq \varphi}}{\varphi \wedge \psi \leq \varphi}}{\varphi \wedge \psi \leq \psi \wedge \varphi}(\wedge \Rightarrow)_{1}(\Rightarrow \wedge)
$$

Finally, observe that

Proof Sketch

Moreover, Fm/ Θ is a lattice. E.g., commutativity of $\wedge^{\mathbf{F m} / \Theta}$ follows from

$$
\left.\frac{\frac{\overline{\psi \leq \psi}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge}}(\wedge \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \wedge \psi \leq \varphi}}{\varphi \wedge \psi \leq \psi \wedge \varphi}(\wedge \Rightarrow)_{1}\right)(\Rightarrow \wedge)
$$

Finally, observe that

$$
\varphi / \Theta \leq^{\mathbf{F m} / \Theta} \psi / \Theta \quad \Leftrightarrow \quad \varphi / \Theta \wedge^{\mathbf{F m} / \Theta} \psi / \Theta=(\varphi \wedge \psi) / \Theta=\varphi / \Theta
$$

Proof Sketch

Moreover, Fm/ Θ is a lattice. E.g., commutativity of $\wedge^{\mathbf{F m} / \Theta}$ follows from

$$
\left.\frac{\frac{\overline{\psi \leq \psi}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge}}(\wedge \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \wedge \psi \leq \varphi}}{\varphi \wedge \psi \leq \psi \wedge \varphi}(\wedge \Rightarrow)_{1}\right)(\Rightarrow \wedge)
$$

Finally, observe that

$$
\begin{aligned}
\varphi / \Theta \leq \mathbf{F m} / \Theta & \psi / \Theta
\end{aligned} \begin{aligned}
\Leftrightarrow & \Leftrightarrow / \Theta \wedge^{\mathrm{Fm} / \Theta} \psi / \Theta=(\varphi \wedge \psi) / \Theta=\varphi / \Theta \\
& \Leftrightarrow \Sigma \vdash_{\mathrm{Lat}} \varphi \wedge \psi \leq \varphi \quad \text { and } \quad \Sigma \vdash_{\mathrm{Lat}} \varphi \leq \varphi \wedge \psi
\end{aligned}
$$

So if $\Sigma \vdash_{\text {Lat }} \varphi \leq \psi$, then $\Sigma \vdash_{\mathcal{L A} \mathcal{T}} \varphi \leq \psi$.

Proof Sketch

Moreover, Fm/ Θ is a lattice. E.g., commutativity of $\wedge^{\mathbf{F m} / \Theta}$ follows from

$$
\left.\frac{\frac{\overline{\psi \leq \psi}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge}}(\wedge \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \wedge \psi \leq \varphi}}{\varphi \wedge \psi \leq \psi \wedge \varphi}(\wedge \Rightarrow)_{1}\right)(\Rightarrow \wedge)
$$

Finally, observe that

$$
\begin{aligned}
\varphi / \Theta \leq^{\mathbf{F m} / \Theta} \psi / \Theta & \Leftrightarrow \varphi / \Theta \wedge^{\mathbf{F m} / \Theta} \psi / \Theta=(\varphi \wedge \psi) / \Theta=\varphi / \Theta \\
& \Leftrightarrow \Sigma \vdash_{\mathrm{Lat}} \varphi \wedge \psi \leq \varphi \quad \text { and } \quad \Sigma \vdash_{\mathrm{Lat}} \varphi \leq \varphi \wedge \psi \\
& \Leftrightarrow \Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi .
\end{aligned}
$$

So if $\sum \forall_{\text {Lat }} \varphi \leq \psi$, then $\Sigma \forall_{\text {cAT }} \varphi \leq \psi$.

Proof Sketch

Moreover, Fm/ Θ is a lattice. E.g., commutativity of $\wedge^{\mathbf{F m} / \Theta}$ follows from

$$
\left.\frac{\frac{\overline{\psi \leq \psi}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge}}(\wedge \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \wedge \psi \leq \varphi}}{\varphi \wedge \psi \leq \psi \wedge \varphi}(\wedge \Rightarrow)_{1}\right)(\Rightarrow \wedge)
$$

Finally, observe that

$$
\begin{aligned}
\varphi / \Theta \leq^{\mathbf{F m} / \Theta} \psi / \Theta & \Leftrightarrow \varphi / \Theta \wedge \mathbf{F m} / \Theta \psi / \Theta=(\varphi \wedge \psi) / \Theta=\varphi / \Theta \\
& \Leftrightarrow \Sigma \vdash_{\mathrm{Lat}} \varphi \wedge \psi \leq \varphi \text { and } \Sigma \vdash_{\mathrm{Lat}} \varphi \leq \varphi \wedge \psi \\
& \Leftrightarrow \Sigma \vdash_{\mathrm{Lat}} \varphi \leq \psi .
\end{aligned}
$$

So if $\Sigma \vdash_{\text {Lat }} \varphi \leq \psi$, then $\Sigma \Vdash_{\mathcal{L A T}} \varphi \leq \psi$.

Cut-Elimination

Now let Lat ${ }^{\circ}$ be Lat without (CUT), and let $d \vdash_{\text {Lå }} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat°.

Theorem

If $\vdash_{\text {Lat }} \varphi \leq \psi$, then $\vdash_{\text {Lat }} \varphi \leq \psi$.
Proof sketch. Applications of (CUT) can be eliminated from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish. Induction hypothesis. We show that

by induction on the sum of the heights of the derivations d_{1} and d_{2}
Base case. If d_{1} ends with (ID), then $\chi=\varphi$ and d_{2} is the required Lat ${ }^{\circ}$-derivation of $\varphi \leq \psi$ (similarly, if d_{2} ends with (ID)).

Cut-Elimination

Now let Lat ${ }^{\circ}$ be Lat without (CUT), and let $d \vdash_{\text {Lat }}{ }^{\circ} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat ${ }^{\circ}$.

Theorem

If $\vdash_{\text {Lat }} \varphi \leq \psi$, then $\vdash_{\text {Lat }} \varphi \leq \psi$.
Proof sketch. Applications of (CUT) can be eliminated from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish. .. Induction hypothesis. We show that
by induction on the sum of the heights of the derivations d_{1} and d_{2}. Base case. If d_{1} ends with (ID), then $\gamma=\varphi$ and d_{2} is the required Lat ${ }^{\circ}$-derivation of $\varphi \leq \psi$ (similarly, if d_{2} ends with (ID)).

Cut-Elimination

Now let Lat ${ }^{\circ}$ be Lat without (CUT), and let $d \vdash_{\text {Lat }}{ }^{\circ} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat ${ }^{\circ}$.

Theorem

If $\vdash_{\text {Lat }} \varphi \leq \psi$, then $\vdash_{\text {Lat }} \varphi \leq \psi$.
Proof sketch. Applications of (CUT) can be eliminated from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish... Induction hypothesis. We show that

$$
\left(d_{1} \vdash_{\mathrm{Lat} \circ} \varphi \leq \chi \quad \text { and } \quad d_{2} \vdash_{\mathrm{Lat}}{ }^{\circ} \chi \leq \psi\right) \quad \Longrightarrow \quad \vdash_{\mathrm{Lat}}{ }^{\circ} \varphi \leq \psi
$$

by induction on the sum of the heights of the derivations d_{1} and d_{2}.
Base case. If d_{1} ends with (ID), then $\chi=\varphi$ and d_{2} is the required Lat ${ }^{\circ}$-derivation of $\varphi \leq \psi$ (similarly, if d_{2} ends with (ID)).

Cut-Elimination

Now let Lat ${ }^{\circ}$ be Lat without (CUT), and let $d \vdash_{\text {Lat }}{ }^{\circ} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat ${ }^{\circ}$.

Theorem

If $\vdash_{\text {Lat }} \varphi \leq \psi$, then $\vdash_{\text {Lat }^{\circ}} \varphi \leq \psi$.
Proof sketch. Applications of (CUT) can be eliminated from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish... Induction hypothesis. We show that

$$
\left(d_{1} \vdash_{\mathrm{Lat} \circ} \varphi \leq \chi \quad \text { and } \quad d_{2} \vdash_{\mathrm{Lat} \circ} \chi \leq \psi\right) \quad \Longrightarrow \quad \vdash_{\mathrm{La} \circ} \varphi \leq \psi
$$

by induction on the sum of the heights of the derivations d_{1} and d_{2}.
Base case. If d_{1} ends with (ID), then $\chi=\varphi$ and d_{2} is the required Lat ${ }^{\circ}$-derivation of $\varphi \leq \psi$ (similarly, if d_{2} ends with (ID)).

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.
(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$
\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi}}(\Rightarrow \wedge) \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi}(\wedge \Rightarrow)_{1}
$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$
\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \wedge)}} \begin{array}{r}
\left(\Rightarrow \chi_{(\text {CUT) }}^{\chi_{1} \wedge \chi_{2} \leq \psi}\right. \\
\varphi \leq)_{1}
\end{array} \quad \Longrightarrow \frac{\vdots}{\frac{\vdots}{\frac{\varphi \chi_{1}}{\varphi \leq \psi} \frac{\vdots}{\chi_{1} \leq \psi}}} \text { (CUT) }
$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$
\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \wedge)} \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi}(\wedge \Rightarrow)_{1} \leq \psi} \text { (CUT) } \quad \Longrightarrow \frac{\vdots}{\frac{\vdots \leq \chi_{1}}{\varphi \leq \psi} \frac{\vdots}{\chi_{1} \leq \psi}} \text { (CUT) }
$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.
(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$
\frac{\frac{\vdots}{\varphi_{1} \leq \chi} \frac{\vdots}{\varphi_{2} \leq \chi}}{\frac{\varphi_{1} \vee \varphi_{2} \leq \chi}{\varphi_{1} \vee \varphi_{2} \leq \psi}(\vee \Rightarrow) \frac{\vdots}{\chi \leq \psi}} \text { (CUT) }
$$

Cut-Elimination

Inductive step. There are two cases:
(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$
\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi)}} \underset{(\Leftrightarrow \wedge)^{\chi_{1} \wedge \chi_{2} \leq \psi}}{(\wedge \Rightarrow)_{1}} \text { (CUT) }_{\varphi \leq \frac{\vdots}{\chi_{1} \leq \psi}}^{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\chi_{1} \leq \psi}} \text { (CUT) }
$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Corollaries of Cut-Elimination

Corollary

The equational theory of lattices is decidable.

We also obtain results for free lattices, e.g., Whitman's condition

Corollaries of Cut-Elimination

Corollary

The equational theory of lattices is decidable.

We also obtain results for free lattices, e.g., Whitman's condition

$$
\begin{aligned}
\vdash_{\mathcal{A T}} \varphi_{1} \wedge \varphi_{2} \leq \psi_{1} \vee \psi_{2} \Longrightarrow & \vdash_{\mathcal{A A T}} \varphi_{1} \leq \psi_{1} \vee \psi_{2}, \vdash_{\mathcal{C A T}} \varphi_{2} \leq \psi_{1} \vee \psi_{2} \\
& \vdash_{\mathcal{A A T}} \varphi_{1} \wedge \varphi_{2} \leq \psi_{1}, \text { or } \vdash_{\mathcal{C A T}} \varphi_{1} \wedge \varphi_{2} \leq \psi_{2} .
\end{aligned}
$$

Part II

Substructural Logics \& Residuated Lattices

An Interesting Case Study

We consider...

- on the logical side, substructural logics,
- on the algebraic side, residuated lattices,
- and the mutually beneficial relationship between the two.

Substructural Logics

Substructural logics are logics that in some sense - they defy precise definition - live "beneath the surface" of classical logic.

Motivated by considerations from linguistics, algebra, set theory, philosophy, and computer science, they all reject at least one classically valid "structural rule"

(The expression "substructural logic" was proposed by Kosta Došen and Peter Schroeder-Heister at a conference in Tübingen in 1990.)

Substructural Logics

Substructural logics are logics that in some sense - they defy precise definition - live "beneath the surface" of classical logic.

Motivated by considerations from linguistics, algebra, set theory, philosophy, and computer science, they all reject at least one classically valid "structural rule".
(The expression "substructural logic" was proposed by Kosta Došen and Peter Schroeder-Heister at a conference in Tübingen in 1990.)

Sequents

Let us begin with a proof-theoretic presentation of classical logic in a language with connectives $\wedge, \vee, \rightarrow, 1$, and 0 , defining $\neg \varphi=\varphi \rightarrow 0$.

A sequent will be an ordered pair of sequences of formulas, written
and possibly understood as

$$
\text { "if all of } \varphi_{1}, \ldots, \varphi_{n} \text { are true, then one of } \psi_{1}, \ldots, \psi_{m} \text { is true". }
$$

We call such a sequent single-conclusion when $m \leq 1$.

Sequents

Let us begin with a proof-theoretic presentation of classical logic in a language with connectives $\wedge, \vee, \rightarrow, 1$, and 0 , defining $\neg \varphi=\varphi \rightarrow 0$.

A sequent will be an ordered pair of sequences of formulas, written

$$
\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi_{1}, \ldots, \psi_{m}
$$

and possibly understood as
"if all of $\varphi_{1}, \ldots, \varphi_{n}$ are true, then one of $\psi_{1}, \ldots, \psi_{m}$ is true".
We call such a sequent single-conclusion when $m \leq 1$.

Sequents

Let us begin with a proof-theoretic presentation of classical logic in a language with connectives $\wedge, \vee, \rightarrow, 1$, and 0 , defining $\neg \varphi=\varphi \rightarrow 0$.

A sequent will be an ordered pair of sequences of formulas, written

$$
\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi_{1}, \ldots, \psi_{m}
$$

and possibly understood as
"if all of $\varphi_{1}, \ldots, \varphi_{n}$ are true, then one of $\psi_{1}, \ldots, \psi_{m}$ is true".

$$
\text { We call such a sequent single-conclusion when } m \leq 1
$$

Sequents

Let us begin with a proof-theoretic presentation of classical logic in a language with connectives $\wedge, \vee, \rightarrow, 1$, and 0 , defining $\neg \varphi=\varphi \rightarrow 0$.

A sequent will be an ordered pair of sequences of formulas, written

$$
\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi_{1}, \ldots, \psi_{m}
$$

and possibly understood as
"if all of $\varphi_{1}, \ldots, \varphi_{n}$ are true, then one of $\psi_{1}, \ldots, \psi_{m}$ is true".
We call such a sequent single-conclusion when $m \leq 1$.

A Sequent Calculus GCL

Initial sequents

$$
\overline{\varphi \Rightarrow \varphi} \text { (ID) }
$$

Left structural rules

Right structural rules

A Sequent Calculus GCL

Initial sequents

$$
\overline{\varphi \Rightarrow \varphi} \text { (ID) }
$$

Left structural rules

$$
\begin{array}{ll}
\frac{\Gamma_{1}, \varphi, \psi, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \psi, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{EL}) & \frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \psi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \psi, \varphi, \Delta_{2}}(\mathrm{ER}) \\
\frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{WL}) & \frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi, \Delta_{2}}(\mathrm{WR}) \\
\frac{\Gamma_{1}, \varphi, \varphi, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{CL}) & \frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \varphi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi, \Delta_{2}}(\mathrm{CR})
\end{array}
$$

Right structural rules

A Sequent Calculus GCL

Initial sequents

$$
\overline{\varphi \Rightarrow \varphi} \text { (ID) }
$$

Left structural rules
$\frac{\Gamma_{1}, \varphi, \psi, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \psi, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{EL})$
$\frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{WL})$
$\frac{\Gamma_{1}, \varphi, \varphi, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi, \Gamma_{2} \Rightarrow \Delta}(\mathrm{CL})$

Cut rule

$$
\frac{\Gamma_{2} \Rightarrow \varphi, \Delta_{2} \quad \Gamma_{1}, \varphi, \Gamma_{3} \Rightarrow \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta_{1}, \Delta_{2}} \text { (CUT) }
$$

Right structural rules

$$
\frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \psi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \psi, \varphi, \Delta_{2}}
$$

$$
\frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi, \Delta_{2}}(\mathrm{WR})
$$

$$
\frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \varphi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi, \Delta_{2}}
$$

A Sequent Calculus GCL

Left operational rules
$\frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, 1, \Gamma_{2} \Rightarrow \Delta}(1 \Rightarrow) \quad \overline{0 \Rightarrow}(0 \Rightarrow) \quad \overline{\Rightarrow 1}(\Rightarrow 1) \quad \frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, 0, \Delta_{2}}(\Rightarrow 0)$

Right operational rules

A Sequent Calculus GCL

Left operational rules

$$
\begin{aligned}
& \frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, 1, \Gamma_{2} \Rightarrow \Delta}(1 \Rightarrow) \quad \overline{0 \Rightarrow}(0 \Rightarrow) \\
& \frac{\Gamma_{1}, \varphi_{i}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{i} i=1,2
\end{aligned}
$$

Right operational rules

$$
\begin{aligned}
& \frac{\Gamma}{\Rightarrow 1}(\Rightarrow 1) \quad \frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, 0, \Delta_{2}}(\Rightarrow 0) \\
& \frac{\Gamma \Rightarrow \Delta_{1}, \varphi_{1}, \Delta_{2} \quad \Gamma \Rightarrow \Delta_{1}, \varphi_{2}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi_{1} \wedge \varphi_{2}, \Delta_{2}}(\Rightarrow \wedge)
\end{aligned}
$$

Right operational rules

A Sequent Calculus GCL

Left operational rules

$$
\begin{aligned}
& \frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, 1, \Gamma_{2} \Rightarrow \Delta}(1 \Rightarrow) \quad \overline{0 \Rightarrow}(0 \Rightarrow) \quad \overline{\Rightarrow 1}(\Rightarrow 1) \quad \frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, 0, \Delta_{2}}(\Rightarrow 0) \\
& \frac{\Gamma_{1}, \varphi_{i}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{i} i=1,2 \\
& \frac{\Gamma_{1}, \varphi_{1}, \Gamma_{2} \Rightarrow \Delta \quad \Gamma_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \vee \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\vee \Rightarrow) \\
& \frac{\Gamma \Rightarrow \Delta_{1}, \varphi_{i}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi_{1} \vee \varphi_{2}, \Delta_{2}}(\Rightarrow \vee)_{i} \quad i=1,2
\end{aligned}
$$

A Sequent Calculus GCL

Left operational rules

$$
\begin{array}{ll}
\frac{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, 1, \Gamma_{2} \Rightarrow \Delta}(1 \Rightarrow) \quad \overline{0 \Rightarrow}(0 \Rightarrow) & \overline{\Rightarrow 1}(\Rightarrow 1) \quad \frac{\Gamma \Rightarrow \Delta_{1}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, 0, \Delta_{2}}(\Rightarrow 0) \\
\frac{\Gamma_{1}, \varphi_{i}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{i} i=1,2 & \frac{\Gamma \Rightarrow \Delta_{1}, \varphi_{1}, \Delta_{2} \Gamma \Rightarrow \Delta_{1}, \varphi_{2}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi_{1} \wedge \varphi_{2}, \Delta_{2}}(\Rightarrow) \\
\frac{\Gamma_{1}, \varphi_{1}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \vee \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta \\
\frac{\Gamma_{2} \Rightarrow \varphi, \Delta_{2} \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, \varphi \rightarrow \psi, \Gamma_{3} \Rightarrow \Delta_{1}, \Delta_{2}}(\checkmark \Rightarrow) & \frac{\Gamma \Rightarrow \Delta_{1}, \varphi_{i}, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \varphi_{1} \vee \varphi_{2}, \Delta_{2}}(\Rightarrow \vee)_{i} i=1,2 \\
& \frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta}(\Rightarrow \rightarrow)
\end{array}
$$

Peirce's Law

$$
\frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi}(\Rightarrow \rightarrow)
$$

Peirce's Law

$$
\begin{aligned}
& \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi \cdot \varphi}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi} \\
& \Rightarrow((\varphi \rightarrow)) \\
& \Rightarrow(\varphi) \rightarrow \varphi) \rightarrow \varphi
\end{aligned}(\Rightarrow)
$$

Peirce's Law

$$
\begin{aligned}
& \frac{\varphi^{(\mathrm{ID})} \Rightarrow \varphi \rightarrow \psi, \varphi}{(\rightarrow \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi, \varphi}(\rightarrow \Rightarrow) \\
& \frac{(\mathrm{CR})}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi} \\
& \frac{\Rightarrow((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi}{\Rightarrow(\Rightarrow \rightarrow)}
\end{aligned}
$$

Peirce's Law

$$
\begin{aligned}
& \frac{\overline{\varphi \Rightarrow \varphi}(\mathrm{ID}) \frac{\varphi \rightarrow \psi, \varphi}{\Rightarrow \varphi \rightarrow \psi, \varphi}}{\frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi, \varphi}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}(\mathrm{CR})}(\rightarrow \Rightarrow) \\
& \frac{(\varphi \rightarrow \psi)}{\Rightarrow((\varphi \rightarrow \psi) \rightarrow \varphi) \rightarrow \varphi}(\Rightarrow \rightarrow)
\end{aligned}
$$

Peirce's Law

Peirce's Law

A First Substructural Logic?

A sequent calculus GIL for intuitionistic logic is obtained by restricting the rules of GCL to single-conclusion sequents.

For example, we obtain implication rules

and lose the contraction right rule (CR).

A First Substructural Logic?

A sequent calculus GIL for intuitionistic logic is obtained by restricting the rules of GCL to single-conclusion sequents.

For example, we obtain implication rules

$$
\frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \rightarrow \psi, \Gamma_{3} \Rightarrow \Delta}(\rightarrow \Rightarrow) \quad \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \rightarrow \psi}(\Rightarrow \rightarrow)
$$

and lose the contraction right rule (CR).

Two Conjunctions?

If "I have €1 and I have €1", how many Euros do I have? €1 or €2?
The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

These are inter-derivable in LJ and LK, e.g.

but not if we drop structural rules.

Two Conjunctions?

If "I have €1 and I have €1", how many Euros do I have? €1 or €2?
The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction,

These are inter-derivable in LJ and LK, e.g.

but not if we drop structural rules.

Two Conjunctions?

If "I have €1 and I have €1", how many Euros do I have? €1 or €2?
The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$
\frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \cdot \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\cdot \Rightarrow) \quad \frac{\Gamma_{1} \Rightarrow \varphi_{1}, \Delta_{1} \quad \Gamma_{2} \Rightarrow \varphi_{2}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi_{1} \cdot \varphi_{2}, \Delta_{1}, \Delta_{2}}(\Rightarrow \cdot)
$$

These are inter-derivable in LJ and LK, e.g.

but not if we drop structural rules.

Two Conjunctions?

If "I have €1 and I have €1", how many Euros do I have? €1 or €2?
The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$
\frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \cdot \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\cdot \Rightarrow) \quad \frac{\Gamma_{1} \Rightarrow \varphi_{1}, \Delta_{1} \quad \Gamma_{2} \Rightarrow \varphi_{2}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi_{1} \cdot \varphi_{2}, \Delta_{1}, \Delta_{2}}(\Rightarrow \cdot)
$$

These are inter-derivable in LJ and LK, e.g.

$$
\frac{\frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{2}}{\frac{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{1}}\left(\begin{array}{ll}
\text { CL }) & \frac{\Gamma_{1}, \varphi_{i}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta \Delta}(\mathrm{WL}) \\
\Gamma_{1}, \varphi_{1} \cdot \varphi_{2}, \Gamma_{2} \Rightarrow \Delta \\
(\cdot \Rightarrow)
\end{array}\right.
$$

but not if we drop structural rules.

Two Conjunctions?

If "I have €1 and I have €1", how many Euros do I have? €1 or €2?
The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$
\frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \cdot \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\cdot \Rightarrow) \quad \frac{\Gamma_{1} \Rightarrow \varphi_{1}, \Delta_{1} \quad \Gamma_{2} \Rightarrow \varphi_{2}, \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi_{1} \cdot \varphi_{2}, \Delta_{1}, \Delta_{2}}(\Rightarrow \cdot)
$$

These are inter-derivable in LJ and LK, e.g.

$$
\begin{aligned}
& \frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{2} \\
& \frac{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta \Delta}{\Gamma_{1}, \varphi_{1} \wedge \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\wedge \Rightarrow)_{1} \\
& (\mathrm{cL})
\end{aligned}
$$

$$
\frac{\Gamma_{1}, \varphi_{i}, \Gamma_{2} \Rightarrow \Delta}{\frac{\Gamma_{1}, \varphi_{1}, \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}{\Gamma_{1}, \varphi_{1} \cdot \varphi_{2}, \Gamma_{2} \Rightarrow \Delta}(\mathrm{WL})}(\cdot \Rightarrow)
$$

but not if we drop structural rules...

Dropping Weakening

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.
E.g., relevant logics denying "paradoxes of strict implication" like $\varphi \rightarrow\left(\psi \vee \neg \psi^{\prime}\right) \quad$ and $\quad(\varphi \wedge \neg \varphi) \rightarrow \psi$
are obtained by removing the weakening rules and adding rules for
The most famous relevant logic R (which admits distributivity) requires a more complicated sequent framework, however.

Dropping Weakening

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.
E.g., relevant logics denying "paradoxes of strict implication" like

$$
\varphi \rightarrow(\psi \vee \neg \psi) \quad \text { and } \quad(\varphi \wedge \neg \varphi) \rightarrow \psi
$$

are obtained by removing the weakening rules and adding rules for \cdot.

The most famous relevant logic R (which admits distributivity) requires
a more complicated sequent framework, however.

Dropping Weakening

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.
E.g., relevant logics denying "paradoxes of strict implication" like

$$
\varphi \rightarrow(\psi \vee \neg \psi) \quad \text { and } \quad(\varphi \wedge \neg \varphi) \rightarrow \psi
$$

are obtained by removing the weakening rules and adding rules for \cdot.
The most famous relevant logic R (which admits distributivity) requires a more complicated sequent framework, however.

Dropping Contraction

In the 1920's, Jan Łukasiewicz introduced logics with $n \geq 3$ truth values and an infinite-valued logic with truth values in $[0,1]$, where negation and implication are interpreted by the truth functions

$$
\neg x=1-x \quad \text { and } \quad x \rightarrow y=\min (1,1-x+y)
$$

Contraction fails, since the following formula is not valid (constantly 1):

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

Dropping Contraction

In the 1920's, Jan Łukasiewicz introduced logics with $n \geq 3$ truth values and an infinite-valued logic with truth values in $[0,1]$, where negation and implication are interpreted by the truth functions

$$
\neg x=1-x \quad \text { and } \quad x \rightarrow y=\min (1,1-x+y)
$$

Contraction fails, since the following formula is not valid (constantly 1):

$$
\begin{aligned}
& \qquad(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi) \\
& \text { These and related contraction-free logics have been used to model } \\
& \text { vagueness and to (try to) avoid set-theoretic paradoxes. } \\
& \text { Sequent calculi do not always suffice for these logics, but they can be } \\
& \text { presented as substructural logics in a hypersequent framework. }
\end{aligned}
$$

Dropping Contraction

In the 1920's, Jan Łukasiewicz introduced logics with $n \geq 3$ truth values and an infinite-valued logic with truth values in $[0,1]$, where negation and implication are interpreted by the truth functions

$$
\neg x=1-x \quad \text { and } \quad x \rightarrow y=\min (1,1-x+y)
$$

Contraction fails, since the following formula is not valid (constantly 1):

$$
(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)
$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

Dropping Contraction

In the 1920's, Jan Łukasiewicz introduced logics with $n \geq 3$ truth values and an infinite-valued logic with truth values in $[0,1]$, where negation and implication are interpreted by the truth functions

$$
\neg x=1-x \quad \text { and } \quad x \rightarrow y=\min (1,1-x+y)
$$

Contraction fails, since the following formula is not valid (constantly 1):

$$
(\varphi \rightarrow(\varphi \rightarrow \psi)) \rightarrow(\varphi \rightarrow \psi)
$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

Dropping Weakening and Contraction

Other "resource-based" substructural logics are obtained by dropping both weakening and contraction rules.

Girard's linear logic also adds rules for the special connectives ! "of course" and ? "why not" that recover structural properties, e.g.

Dropping Weakening and Contraction

Other "resource-based" substructural logics are obtained by dropping both weakening and contraction rules.

Girard's linear logic also adds rules for the special connectives ! "of course" and ? "why not" that recover structural properties, e.g.

$$
\begin{array}{ll}
\frac{\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta}(!\Rightarrow) & \frac{!\Gamma \Rightarrow \varphi, ? \Delta}{!\Gamma \Rightarrow!\varphi, ? \Delta}(\Rightarrow!) \\
\frac{\Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta}(!\mathrm{WL}) & \frac{!\varphi,!\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta}(!\mathrm{CL})
\end{array}
$$

Dropping all Structural Rules

Lambek's calculus for grammatical types has "division operators" \} and /, where, e.g., the intransitive verb "works" has type $n \backslash s$ and the adjective "poor" has type n / n (with $n=$ noun phrase and $s=$ sentence).

The rules for
and / are obtained as alternative rules for implication:

> The Full Lambek Calculus FL consists of GIL without any structural rules but extended with rules for \cdot, \backslash, and $/$.

Dropping all Structural Rules

Lambek's calculus for grammatical types has "division operators" \backslash and /, where, e.g., the intransitive verb "works" has type $n \backslash s$ and the adjective "poor" has type n / n (with $n=$ noun phrase and $s=$ sentence).

The rules for \backslash and / are obtained as alternative rules for implication:

$$
\begin{array}{ll}
\frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \backslash \psi, \Gamma_{3} \Rightarrow \Delta}(\backslash \Rightarrow) & \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \backslash \psi}(\Rightarrow \backslash) \\
\frac{\Gamma_{2} \Rightarrow \varphi \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \psi / \varphi, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta}(/ \Rightarrow) & \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \psi / \varphi}(\Rightarrow /)
\end{array}
$$

The Full Lambek Calculus FL consists of GIL without any structural rules but extended with rules for \cdot, \backslash, and

Dropping all Structural Rules

Lambek's calculus for grammatical types has "division operators" \} and /, where, e.g., the intransitive verb "works" has type $n \backslash s$ and the adjective "poor" has type n / n (with $n=$ noun phrase and $s=$ sentence).

The rules for \backslash and / are obtained as alternative rules for implication:

$$
\begin{array}{ll}
\frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \backslash \psi, \Gamma_{3} \Rightarrow \Delta}(\backslash \Rightarrow) & \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \backslash \psi}(\Rightarrow \backslash) \\
\frac{\Gamma_{2} \Rightarrow \varphi \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \psi / \varphi, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta}(/ \Rightarrow) & \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \psi / \varphi}(\Rightarrow /)
\end{array}
$$

The Full Lambek Calculus FL consists of GIL without any structural rules but extended with rules for \cdot, \backslash, and $/$.

Extensions of FL

Typically, FL extended appropriately with exchange (e), weakening (w), and contraction (c) rules is denoted by FL_{S} for $S \subseteq\{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

> We can also explore substructural logics in richer frameworks; e.g., hypersequents, display logic, nested sequents.

Extensions of FL

Typically, FL extended appropriately with exchange (e), weakening (w), and contraction (c) rules is denoted by FL_{S} for $S \subseteq\{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

$$
\frac{\Gamma_{1} \Rightarrow \Delta_{1} \quad \Gamma_{2} \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}(\mathrm{MIX}) \quad \frac{\Gamma, \Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \Delta}(\mathrm{GC})
$$

We can also explore substructural logics in richer frameworks;
e.g., hypersequents, display logic, nested sequents.

Extensions of FL

Typically, FL extended appropriately with exchange (e), weakening (w), and contraction (c) rules is denoted by FL_{S} for $S \subseteq\{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

$$
\frac{\Gamma_{1} \Rightarrow \Delta_{1} \quad \Gamma_{2} \Rightarrow \Delta_{2}}{\Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}(\mathrm{MIX}) \quad \frac{\Gamma, \Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \Delta}(\mathrm{GC})
$$

We can also explore substructural logics in richer frameworks; e.g., hypersequents, display logic, nested sequents...

From Consequence to Algebra?

Each sequent calculus C gives rise to a consequence relation \vdash_{C} over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup\{S\}$:

But what is a suitable algebraic semantics for FL?

From Consequence to Algebra?

Each sequent calculus C gives rise to a consequence relation \vdash_{C} over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup\{S\}$:

$$
\Theta \vdash_{\mathrm{FL}} S \quad \Longleftrightarrow \quad S \text { is derivable from } \Theta \text { in FL. }
$$

But what is a suitable algebraic semantics for FL?

From Consequence to Algebra?

Each sequent calculus C gives rise to a consequence relation \vdash_{C} over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup\{S\}$:

$$
\Theta \vdash_{\mathrm{FL}} S \quad \Longleftrightarrow \quad S \text { is derivable from } \Theta \text { in FL. }
$$

But what is a suitable algebraic semantics for FL?

Residuated Lattices

A residuated lattice is an algebra

$$
\mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)
$$

such that

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

> An FL-algebra is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with $0=1$.

Residuated Lattices

A residuated lattice is an algebra

$$
\mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)
$$

such that

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

> An FL-algebra is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with $0=1$.

Residuated Lattices

A residuated lattice is an algebra

$$
\mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)
$$

such that

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

> An FL-algebra is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with $0=1$.

Residuated Lattices

A residuated lattice is an algebra

$$
\mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)
$$

such that

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

$$
x \leq z / y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \backslash z
$$

> An FL-algebra is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with $0=1$.

Residuated Lattices

A residuated lattice is an algebra

$$
\mathbf{A}=(A, \wedge, \vee, \cdot, \backslash, /, 1)
$$

such that

- (A, \wedge, \vee) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

$$
x \leq z / y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \backslash z
$$

An FL-algebra is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with $0=1$.

The Commutative Setting

Commutative FL-algebras satisfy the equation

$$
x \cdot y \approx y \cdot x
$$

and therefore also

So in this case, we just write \rightarrow for either \backslash or $/$.

Consider, for example:

$(\mathbb{Z}, \min , \max ,+,-, 0)$

The Commutative Setting

Commutative FL-algebras satisfy the equation

$$
x \cdot y \approx y \cdot x
$$

and therefore also

$$
x \backslash y \approx y / x
$$

So in this case, we just write \rightarrow for either \backslash or $/$.

Consider, for example:

$(\mathbb{Z}, \min , \max ,+,-, 0)$.

The Commutative Setting

Commutative FL-algebras satisfy the equation

$$
x \cdot y \approx y \cdot x
$$

and therefore also

$$
x \backslash y \approx y / x
$$

So in this case, we just write \rightarrow for either \backslash or $/$.

Consider, for example:

$(\mathbb{Z}, \min , \max ,+,-, 0)$

The Commutative Setting

Commutative FL-algebras satisfy the equation

$$
x \cdot y \approx y \cdot x
$$

and therefore also

$$
x \backslash y \approx y / x
$$

So in this case, we just write \rightarrow for either \backslash or $/$.

Consider, for example:

$$
(\mathbb{Z}, \min , \max ,+,-, 0)
$$

Examples from Rings

Let \mathbf{R} be a unital ring and $\mathrm{I}(R)$ the lattice of two-sided ideals of \mathbf{R}.
Consider the operations for $I, J \in I(R)$:

Then we obtain an FL-algebra:

Examples from Rings

Let \mathbf{R} be a unital ring and $\mathrm{I}(R)$ the lattice of two-sided ideals of \mathbf{R}.
Consider the operations for $I, J \in \mathrm{I}(R)$:

$$
\begin{aligned}
I \cdot J & =\left\{\sum_{k=1}^{n} a_{k} b_{k} \mid a_{k} \in I ; b_{k} \in J ; n \geq 1\right\} \\
\Lambda J & =\{x \in R \mid I \subseteq J\} \\
J / I & =\{x \in R \mid x I \subseteq J\}
\end{aligned}
$$

Then we obtain an FL-algebra:

$$
\mathrm{I}(\mathbf{R})=(\mathrm{I}(R), \cap, \vee, \cdot, \backslash, /, R,\{0\})
$$

Examples from Rings

Let \mathbf{R} be a unital ring and $\mathrm{I}(R)$ the lattice of two-sided ideals of \mathbf{R}.
Consider the operations for $I, J \in \mathrm{I}(R)$:

$$
\begin{aligned}
I \cdot J & =\left\{\sum_{k=1}^{n} a_{k} b_{k} \mid a_{k} \in I ; b_{k} \in J ; n \geq 1\right\} \\
\Lambda J & =\{x \in R \mid I \subseteq \subseteq J\} \\
J / I & =\{x \in R \mid x I \subseteq J\}
\end{aligned}
$$

Then we obtain an FL-algebra:

$$
\mathrm{I}(\mathbf{R})=(\mathrm{I}(R), \cap, \vee, \cdot, \backslash, /, R,\{0\})
$$

An Equational Axiomatization

The class $\mathcal{F} \mathcal{L}$ of FL-algebras is a variety defined by the equations for lattices and monoids together with

An Equational Axiomatization

The class $\mathcal{F} \mathcal{L}$ of FL -algebras is a variety defined by the equations for lattices and monoids together with

$$
\begin{array}{ll}
x \cdot(y \vee z) \approx(x \cdot y) \vee(x \cdot z) & (y \vee z) \cdot x \approx(y \cdot x) \vee(z \cdot x) \\
x \backslash y \leq x \backslash(y \vee z) & y / x \leq(y \vee z) / x \\
x \cdot(x \backslash y) \leq y \leq x \backslash(x \cdot y) & (y / x) \cdot x \leq y \leq(y \cdot x) / x .
\end{array}
$$

Significant Classes

Up to term-equivalence...

- Heyting algebras are commutative FL-algebras satisfying

$$
x \cdot y \approx x \wedge y \quad \text { and } \quad 0 \leq x
$$

- Boolean algebras are Heyting algebras satisfying $(\neg x=x \rightarrow 0)$
- Lattice-ordered groups are residuated lattices satisfying

$$
x \cdot(1 / x) \approx 1
$$

- MV-algebras are commutative FL-algebras satisfying

Significant Classes

Up to term-equivalence...

- Heyting algebras are commutative FL-algebras satisfying

$$
x \cdot y \approx x \wedge y \quad \text { and } \quad 0 \leq x
$$

- Boolean algebras are Heyting algebras satisfying $(\neg x=x \rightarrow 0)$

$$
\neg \neg X \approx x
$$

- Lattice-ordered groups are residuated lattices satisfying $x \cdot(1 / x) \approx 1$
- MV-algebras are commutative FL-algebras satisfying

Significant Classes

Up to term-equivalence...

- Heyting algebras are commutative FL-algebras satisfying

$$
x \cdot y \approx x \wedge y \quad \text { and } \quad 0 \leq x
$$

- Boolean algebras are Heyting algebras satisfying $(\neg x=x \rightarrow 0)$

$$
\neg \neg X \approx x
$$

- Lattice-ordered groups are residuated lattices satisfying

$$
x \cdot(1 / x) \approx 1
$$

- MV-algebras are commutative FL-algebras satisfying

Significant Classes

Up to term-equivalence...

- Heyting algebras are commutative FL-algebras satisfying

$$
x \cdot y \approx x \wedge y \quad \text { and } \quad 0 \leq x
$$

- Boolean algebras are Heyting algebras satisfying $(\neg x=x \rightarrow 0)$

$$
\neg \neg X \approx X
$$

- Lattice-ordered groups are residuated lattices satisfying

$$
x \cdot(1 / x) \approx 1
$$

- MV-algebras are commutative FL-algebras satisfying

$$
x \vee y \approx(x \rightarrow y) \rightarrow y \quad \text { and } \quad 0 \leq x
$$

Equivalence of $\vdash_{\text {RL }}$ and $\vdash_{\mathcal{F L}}$

Theorem

\vdash_{FL} and $\vdash_{\mathcal{F L}}$ are equivalent with transformers defined by

$$
\begin{aligned}
\tau(\varphi \approx \psi) & =\{\varphi \Rightarrow \psi, \psi \Rightarrow \varphi\} \\
\rho\left(\varphi_{1}, \ldots, \varphi_{n} \Rightarrow \psi\right) & =\left\{\varphi_{1} \cdot \ldots \cdot \varphi_{n} \leq \psi\right\} \\
\rho\left(\varphi_{1}, \ldots, \varphi_{n} \Rightarrow\right) & =\left\{\varphi_{1} \cdot \ldots \cdot \varphi_{n} \leq 0\right\}
\end{aligned}
$$

where $\varphi_{1} \cdot \ldots \cdot \varphi_{n}$ is 1 when $n=0$.

Decidability

For a given class of $F L$-algebras \mathcal{K}, we might ask. . .

- is the equational theory of \mathcal{K} decidable?
$\left(\vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given \mathcal{L}-equation $\varphi \approx \psi$?)
- is the quasiequational theory of \mathcal{K} decidable?
$\left(\Sigma \vdash_{\mathcal{C}} \varphi \approx \psi\right.$, for a given finite set of \mathcal{C}-equations $\Sigma \cup\{\varphi \approx \psi\}$?)

We can tackle these problems using tools from both logic and algebra.

Decidability

For a given class of FL-algebras \mathcal{K}, we might ask. . .

- is the equational theory of \mathcal{K} decidable?
$\left(\vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given \mathcal{L}-equation $\varphi \approx \psi$?)
- is the quasiequational theory of \mathcal{K} decidable?
$\left(\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi\right.$, for a given finite set of \mathcal{C}-equations $\Sigma \cup\{\varphi \approx \psi\}$?)

We can tackle these problems using tools from both logic and algebra.

Decidability

For a given class of FL-algebras \mathcal{K}, we might ask. . .

- is the equational theory of \mathcal{K} decidable?
$\left(\vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given \mathcal{L}-equation $\varphi \approx \psi$?)
- is the quasiequational theory of \mathcal{K} decidable?
$\left(\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given finite set of \mathcal{L}-equations $\Sigma \cup\{\varphi \approx \psi\}$?)

We can tackle these problems using tools from both logic and algebra.

Decidability

For a given class of FL-algebras \mathcal{K}, we might ask. . .

- is the equational theory of \mathcal{K} decidable?
$\left(\vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given \mathcal{L}-equation $\varphi \approx \psi$?)
- is the quasiequational theory of \mathcal{K} decidable?
$\left(\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi\right.$ for a given finite set of \mathcal{L}-equations $\Sigma \cup\{\varphi \approx \psi\}$?)

We can tackle these problems using tools from both logic and algebra.

Cut Elimination

- Decidability of the equational theory of $\mathcal{F} \mathcal{L}$ follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly - but not always immediately - for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory.

Cut Elimination

- Decidability of the equational theory of $\mathcal{F} \mathcal{L}$ follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly - but not always immediately - for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory.

Cut Elimination

- Decidability of the equational theory of $\mathcal{F} \mathcal{L}$ follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly - but not always immediately - for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory...

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L}-algebras has the finite model property (FMP) if

$$
\forall_{\mathcal{K}} \varphi \approx \psi \quad \Longrightarrow \quad \vdash_{\mathbf{A}} \varphi \approx \psi \quad \text { for some finite } \mathbf{A} \in \mathcal{K}
$$

and the strong finite model property (SFMP) if (for Σ finite)
\qquad $\Sigma \vdash_{\mathrm{A}} \varphi \approx \psi$
for some finite $A \in \mathcal{K}$.

Lemma

If \mathcal{K} is finitely axiomatizable, then
FMP \Longrightarrow the equational theory of \mathcal{K} is decidable SFMP \longrightarrow the quasiequational theory of \mathcal{K} is decidable.

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L}-algebras has the finite model property (FMP) if

$$
\forall_{\mathcal{K}} \varphi \approx \psi \quad \Longrightarrow \quad \vdash_{\mathbf{A}} \varphi \approx \psi \quad \text { for some finite } \mathbf{A} \in \mathcal{K}
$$ and the strong finite model property (SFMP) if (for Σ finite)

$$
\Sigma \forall_{\mathcal{K}} \varphi \approx \psi \quad \Longrightarrow \quad \Sigma \vdash_{\mathbf{A}} \varphi \approx \psi \quad \text { for some finite } \mathbf{A} \in \mathcal{K} .
$$

Lemma

If \mathcal{K} is finitely axiomatizable, then
FMP \Longrightarrow the equational theory of \mathcal{K} is decidable SFMP \longrightarrow the quasiequational theory of \mathcal{K} is decidable.

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L}-algebras has the finite model property (FMP) if

$$
\vdash_{\mathcal{K}} \varphi \approx \psi \quad \Longrightarrow \quad \vdash_{\mathbf{A}} \varphi \approx \psi \quad \text { for some finite } \mathbf{A} \in \mathcal{K}
$$

and the strong finite model property (SFMP) if (for Σ finite)

$$
\Sigma \forall_{\mathcal{K}} \varphi \approx \psi \quad \Longrightarrow \quad \Sigma \vdash_{\mathbf{A}} \varphi \approx \psi \quad \text { for some finite } \mathbf{A} \in \mathcal{K} .
$$

Lemma

If \mathcal{K} is finitely axiomatizable, then
FMP \Longrightarrow the equational theory of \mathcal{K} is decidable
SFMP \Longrightarrow the quasiequational theory of \mathcal{K} is decidable.

Finite Embeddability Property

\mathcal{K} has the finite embeddability property (FEP) if

\author{

B is a finite partial
 subalgebra of $\mathbf{A} \in \mathcal{K}$
 | $\Longrightarrow \quad$ | B embeds into |
| :--- | :--- |
| | some finite $\mathbf{C} \in \mathcal{K}$. |

}

> Lemma
> If \mathcal{K} has the FEP, then \mathcal{K} has the SFMP and if it is also finitely axiomatizable, its quasiequational theory is decidable.

Finite Embeddability Property

\mathcal{K} has the finite embeddability property (FEP) if

B is a finite partial
subalgebra of $\mathbf{A} \in \mathcal{K}$

$\Longrightarrow \quad B$ embeds into some finite $\mathbf{C} \in \mathcal{K}$.

Lemma

If \mathcal{K} has the FEP, then \mathcal{K} has the SFMP and if it is also finitely axiomatizable, its quasiequational theory is decidable.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, D can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of B coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice
D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, \mathbf{D} can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of B coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, D can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of \mathbf{B} coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, \mathbf{D} can be viewed as a Heyting algebra. residuum operation of B coincides (where defined) with the residuum
of the meet of D, so B can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, D can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of \mathbf{B} coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

> More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, D can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of \mathbf{B} coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

Establishing the FEP

Theorem (McKinsey and Tarski)

The variety $\mathcal{H} \mathcal{A}$ of Heyting algebras has the FEP.

Proof.

Let \mathbf{B} be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{H} \mathcal{A}$. Then the lattice D generated by $B \cup\{0,1\}$ is a finitely generated distributive lattice and hence finite. Since the \wedge in any finite distributive lattice is residuated, D can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of \mathbf{B} coincides (where defined) with the residuum of the meet of \mathbf{D}, so \mathbf{B} can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

The Amalgamation Property

A class of \mathcal{L}-algebras \mathcal{K} has the amalgamation property (AP) if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings i and j of \mathbf{A} into \mathbf{B} and \mathbf{C}, there exist $\mathbf{D} \in \mathcal{K}$ and embeddings h, k of \mathbf{B} and \mathbf{C} into \mathbf{D} such that $h \circ i=k \circ j$.

The Deductive Interpolation Property

\mathcal{K} has the deductive interpolation property (DIP) if whenever

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi
$$

there exists a set of equations Δ satisfying

Theorem

A varietv of commutative FL-algebras has the AP iff it has the DIP

The Deductive Interpolation Property

\mathcal{K} has the deductive interpolation property (DIP) if whenever

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi
$$

there exists a set of equations Δ satisfying

- $\operatorname{Var}(\Delta) \subseteq \operatorname{Var}(\Sigma) \cap \operatorname{Var}(\varphi \approx \psi)(\operatorname{Var}(X)$ denotes the variables of $X)$

Theorem
A variety of commutative FL-algebras has the AP iff it has the DIP.

The Deductive Interpolation Property

\mathcal{K} has the deductive interpolation property (DIP) if whenever

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi
$$

there exists a set of equations Δ satisfying

- $\operatorname{Var}(\Delta) \subseteq \operatorname{Var}(\Sigma) \cap \operatorname{Var}(\varphi \approx \psi)(\operatorname{Var}(X)$ denotes the variables of $X)$
- $\Sigma \vdash_{\mathcal{K}} \Delta$

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

The Deductive Interpolation Property

\mathcal{K} has the deductive interpolation property (DIP) if whenever

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi
$$

there exists a set of equations Δ satisfying

- $\operatorname{Var}(\Delta) \subseteq \operatorname{Var}(\Sigma) \cap \operatorname{Var}(\varphi \approx \psi)(\operatorname{Var}(X)$ denotes the variables of $X)$
- $\Sigma \vdash_{\mathcal{K}} \Delta$
- $\Delta \vdash_{\mathcal{K}} \varphi \approx \psi$.

Theorem
 A variety of commutative FL-algebras has the AP iff it has the DIP.

The Deductive Interpolation Property

\mathcal{K} has the deductive interpolation property (DIP) if whenever

$$
\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi
$$

there exists a set of equations Δ satisfying

- $\operatorname{Var}(\Delta) \subseteq \operatorname{Var}(\Sigma) \cap \operatorname{Var}(\varphi \approx \psi)(\operatorname{Var}(X)$ denotes the variables of $X)$
- $\Sigma \vdash_{\mathcal{K}} \Delta$
- $\Delta \vdash_{\mathcal{K}} \varphi \approx \psi$.

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

Establishing the AP

Theorem

The variety $\mathcal{H A}$ of Heyting algebras has the AP.

Proof.

It suffices to show that $\mathcal{H} \mathcal{A}$ has the DIP using the calculus GIL. Namely, we can prove that whenever

$$
\vdash_{\mathrm{GIL}} \Gamma_{1}, \Gamma_{2} \Rightarrow \varphi
$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}\left(\Gamma_{1}\right) \cap \operatorname{Var}\left(\Gamma_{2}, \varphi\right)$
- $\vdash_{\text {GIL }} \Gamma_{1} \Rightarrow \psi$
- $\vdash_{\text {GIL }} \Gamma_{2}, \psi \Rightarrow \varphi$
by induction on the height of a cut-free derivation of $\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi$.

Establishing the AP

Theorem

The variety $\mathcal{H A}$ of Heyting algebras has the AP.

Proof.

It suffices to show that $\mathcal{H} \mathcal{A}$ has the DIP using the calculus GIL. Namely, we can prove that whenever

by induction on the height of a cut-free derivation of $\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi$.

Establishing the AP

Theorem

The variety $\mathcal{H A}$ of Heyting algebras has the AP.

Proof.

It suffices to show that $\mathcal{H} \mathcal{A}$ has the DIP using the calculus GIL. Namely, we can prove that whenever

$$
\vdash_{\mathrm{GIL}} \Gamma_{1}, \Gamma_{2} \Rightarrow \varphi
$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}\left(\Gamma_{1}\right) \cap \operatorname{Var}\left(\Gamma_{2}, \varphi\right)$
- $\vdash_{\text {GIL }} \Gamma_{1} \Rightarrow \psi$
- $\vdash_{\text {GIL }} \Gamma_{2}, \psi \Rightarrow \varphi$
by induction on the height of a cut-free derivation of $\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi$.

Establishing the AP

Theorem

The variety $\mathcal{H A}$ of Heyting algebras has the AP.

Proof.

It suffices to show that $\mathcal{H} \mathcal{A}$ has the DIP using the calculus GIL. Namely, we can prove that whenever

$$
\vdash_{\mathrm{GIL}} \Gamma_{1}, \Gamma_{2} \Rightarrow \varphi
$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}\left(\Gamma_{1}\right) \cap \operatorname{Var}\left(\Gamma_{2}, \varphi\right)$
- $\vdash_{\text {GIL }} \Gamma_{1} \Rightarrow \psi$
- $\vdash_{\text {GIL }} \Gamma_{2}, \psi \Rightarrow \varphi$
by induction on the height of a cut-free derivation of $\Gamma_{1}, \Gamma_{2} \Rightarrow \varphi$.

Final Remarks

- Relationships between logic and algebra, developed via consequence relations, can be fruitful on both sides.
- A current hot topic is the question of when "good" proof systems for logics / classes of algebras exist, and what role duality and relational semantics play in all of this.

Final Remarks

- Relationships between logic and algebra, developed via consequence relations, can be fruitful on both sides.
- A current hot topic is the question of when "good" proof systems for logics / classes of algebras exist, and what role duality and relational semantics play in all of this.

Further Reading

STUDIES IN LOGIC AND
THE VOUNDATIONS OF MATHEMATICS
Residuated Lattices: An Algebraic Glimpse at Substructural Logics
N. Galatos, P ipsen, t. Kowalski and h. ono
elseviex

[^0]: \mathcal{K} is called an equivalent algebraic semantics for \vdash_{L}

