Ordered Algebras and Logic

George Metcalfe

Mathematical Institute, University of Bern

SGSLPS Meeting, Bern, May 2013

-

We know that mathematicians care no more for logic than logicians for mathematics. The two eyes of science are mathematics and logic; the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.

Augustus de Morgan

A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that

- (i) if $a \in G$, then $a \circ e = a$,
- (ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1} = e$.

we can obtain a set of first-order sentences

$$\begin{split} \mathsf{\Gamma} &= \{ (\forall x) (\forall y) (\forall z) (x \circ (y \circ z) \approx (x \circ y) \circ z), \\ &\quad (\exists x) (\forall y) (y \circ x \approx y \& (\exists z) (y \circ z \approx x)) \} \end{split}$$

and ask about its **consequences**, e.g.

 $\Gamma \models (\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?$

or $\Gamma \vdash (\forall x)(\forall y)(\exists z)(x \circ z \approx y)$?

A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that

- (i) if $a \in G$, then $a \circ e = a$,
- (ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1} = e$.

we can obtain a set of first-order sentences

$$\begin{aligned} \mathsf{\Gamma} &= \{ (\forall x) (\forall y) (\forall z) (x \circ (y \circ z) \approx (x \circ y) \circ z), \\ &\quad (\exists x) (\forall y) (y \circ x \approx y \& (\exists z) (y \circ z \approx x)) \} \end{aligned}$$

and ask about its **consequences**, e.g.

$$\Gamma \models (\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?$$

or $\Gamma \vdash (\forall x)(\forall y)(\exists z)(x \circ z \approx y)$

A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that

- (i) if $a \in G$, then $a \circ e = a$,
- (ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1} = e$.

we can obtain a set of first-order sentences

$$\begin{aligned} \mathsf{\Gamma} &= \{ (\forall x) (\forall y) (\forall z) (x \circ (y \circ z) \approx (x \circ y) \circ z), \\ &\quad (\exists x) (\forall y) (y \circ x \approx y \& (\exists z) (y \circ z \approx x)) \} \end{aligned}$$

and ask about its consequences, e.g.

$$\mathsf{\Gamma} \models (\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?$$

or $\Gamma \vdash (\forall x)(\forall y)(\exists z)(x \circ z \approx y)$?

A group is an ordered pair (G, \circ) such that G is a set, \circ is an associative binary operation on G, and $\exists e \in G$ such that

- (i) if $a \in G$, then $a \circ e = a$,
- (ii) if $a \in G$, then $\exists a^{-1} \in G$ such that $a \circ a^{-1} = e$.

we can obtain a set of first-order sentences

$$\begin{aligned} \mathsf{\Gamma} &= \{ (\forall x) (\forall y) (\forall z) (x \circ (y \circ z) \approx (x \circ y) \circ z), \\ &\quad (\exists x) (\forall y) (y \circ x \approx y \& (\exists z) (y \circ z \approx x)) \} \end{aligned}$$

and ask about its **consequences**, e.g.

$$\mathsf{\Gamma} \models (\forall x)(\forall y)(\exists z)(x \circ z \approx y) \quad ?$$

or
$$\Gamma \vdash (\forall x)(\forall y)(\exists z)(x \circ z \approx y)$$
 ?

< 🗇 🕨 < 🖻 🕨

This tutorial will consist of two parts:

- (I) Consequence in Logic and Algebra
- (II) Substructural Logics and Residuated Lattices.

Part I

Consequence in Logic and Algebra

George Metcalfe (University of Bern)

Ordered Algebras and Logic

May 2013 5 / 65

A .

Categorical syllogisms, as described by Aristotle in the *Prior Analytics* (c. 350 BC), consist of three parts: the major premise, the minor premise, and the conclusion.

A (10) A (10) A (10)

For example:

Major premise:No homework is fun.(No M are FMinor premise:Some reading is homework.(Some S areConclusion:Some reading is not fun.(Some S are

Categorical syllogisms, as described by Aristotle in the *Prior Analytics* (c. 350 BC), consist of three parts: the major premise, the minor premise, and the conclusion.

For example:

Major premise:No homework is fun.(No M are P.)Minor premise:Some reading is homework.(Some S are M.)Conclusion:Some reading is not fun.(Some S are not P.)

Boolean algebras originated in George Boole's *An Investigation of the Laws of Thought* (1865) and consist of a set *B* with binary operations \land, \lor , a unary operation ', and constants 0, 1.

Key examples include:

• the two-element Boolean algebra (with x' = 1 - x)

 $(\{0,1\}, min, max, ', 0, 1)$

• power set algebras, for a set A (with $B' = A \setminus B$)

 $(\wp(A), \cap, \cup, ', \emptyset, A).$

Boolean algebras originated in George Boole's *An Investigation of the Laws of Thought* (1865) and consist of a set *B* with binary operations \land, \lor , a unary operation ', and constants 0, 1.

Key examples include:

• the two-element Boolean algebra (with x' = 1 - x)

 $(\{0,1\},min,max,',0,1)$

• power set algebras, for a set A (with $B' = A \setminus B$)

 $(\wp(A), \cap, \cup, ', \emptyset, A).$

Boolean algebras originated in George Boole's *An Investigation of the Laws of Thought* (1865) and consist of a set *B* with binary operations \land , \lor , a unary operation ', and constants 0, 1.

Key examples include:

• the two-element Boolean algebra (with x' = 1 - x)

 $(\{0,1\},min,max,',0,1)$

• power set algebras, for a set A (with $B' = A \setminus B$)

$$(\wp(A), \cap, \cup, ', \emptyset, A).$$

Formal systems for logical consequence (the predicate calculus) based on the notion of **proof** were developed by Frege, Hilbert, Bernays, Russell, Gentzen, and others (1879-1935).

 $\Gamma \vdash \varphi$ "There is a proof of φ from Γ ."

A "truth-oriented" description of logical consequence was given by Alfred Tarski (1936) based on **models**: mathematical structures that provide interpretations for non-logical primitives of a formal language.

$\Gamma \models \varphi$ "If **A** is a model of Γ , then **A** is a model of φ ."

The equivalence of the semantic (truth) and syntactic (proof) approaches was established by Kurt Gödel in his 1929 doctoral dissertation, i.e.

$$\Gamma \vdash \varphi \quad \Leftrightarrow \quad \Gamma \models \varphi.$$

< □ > < □ > < □ > < □ >

- A more abstract framework for investigating consequence is provided by Tarski's notion of a **consequence relation**.
- We consider here how consequence relations can be defined in terms of **proof systems** and **classes of algebras**.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the **equivalence** of consequence relations.
- As an example, we consider equivalent consequence relations for the class of **lattices** and a simple application.

- A more abstract framework for investigating consequence is provided by Tarski's notion of a **consequence relation**.
- We consider here how consequence relations can be defined in terms of **proof systems** and **classes of algebras**.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the **equivalence** of consequence relations.
- As an example, we consider equivalent consequence relations for the class of **lattices** and a simple application.

- A more abstract framework for investigating consequence is provided by Tarski's notion of a **consequence relation**.
- We consider here how consequence relations can be defined in terms of **proof systems** and **classes of algebras**.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the **equivalence** of consequence relations.
- As an example, we consider equivalent consequence relations for the class of **lattices** and a simple application.

- A more abstract framework for investigating consequence is provided by Tarski's notion of a **consequence relation**.
- We consider here how consequence relations can be defined in terms of **proof systems** and **classes of algebras**.
- We give an account (following Lindenbaum-Tarski, Blok-Pigozzi, Jónsson, etc.) of the **equivalence** of consequence relations.
- As an example, we consider equivalent consequence relations for the class of **lattices** and a simple application.

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).
- ⊢ is called **finitary** if also
 - $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.
- We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).
- ⊢ is called **finitary** if also
 - $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).

⊢ is called **finitary** if also

• $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

イロト イ団ト イヨト イヨト

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).

⊢ is called **finitary** if also

• $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

イロト イ団ト イヨト イヨト

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).

⊢ is called **finitary** if also

• $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

イロト イ団ト イヨト イヨト

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).

⊢ is called **finitary** if also

• $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

A (10) A (10)

- $X \vdash a$ if $a \in X$ (reflexivity)
- $X \vdash a$ implies $X \cup Y \vdash a$ (monotonicity)
- $X \vdash a$ and $X \cup \{a\} \vdash b$ implies $X \vdash b$ (transitivity).
- ⊢ is called **finitary** if also
 - $X \vdash a$ implies $Y \vdash a$ for some finite $Y \subseteq X$.

We write $X \vdash Y$ when $X \vdash a$ for all $a \in Y$.

Note that consequence relations over *A* are in 1-1 correspondence with **consequence operators** (closure operators) on the poset ($\wp(A), \subseteq$).

- a language *L* consisting of function symbols (or connectives) such as ∘, ⁻¹, *e*, ∧, ∨, ¬, 0, 1 with specified finite arities
- *L*-algebras consisting of a set A together with functions f^A for each function symbol f of *L*
- the set Fm_L of L-formulas φ, ψ... built from a countably infinite set of variables x, y... and the formula algebra Fm_L

• the set $\operatorname{Eq}_{\mathcal{L}}$ of \mathcal{L} -equations, written $\varphi \approx \psi$.

< (17) > < (2) > (17)

- a language *L* consisting of function symbols (or connectives) such as ∘, ⁻¹, *e*, ∧, ∨, ¬, 0, 1 with specified finite arities
- *L*-algebras consisting of a set A together with functions f^A for each function symbol f of *L*
- the set Fm_L of L-formulas φ, ψ... built from a countably infinite set of variables x, y... and the formula algebra Fm_L

• the set $\operatorname{Eq}_{\mathcal{L}}$ of \mathcal{L} -equations, written $\varphi \approx \psi$.

A (10) F (10)

- a language *L* consisting of function symbols (or connectives) such as ∘, ⁻¹, *e*, ∧, ∨, ¬, 0, 1 with specified finite arities
- *L*-algebras consisting of a set A together with functions f^A for each function symbol f of *L*
- the set Fm_L of *L*-formulas φ, ψ... built from a countably infinite set of variables x, y... and the formula algebra Fm_L

• the set $\operatorname{Eq}_{\mathcal{L}}$ of \mathcal{L} -equations, written $\varphi \approx \psi$.

< 🗇 🕨 < 🖻 🕨 <

- a language *L* consisting of function symbols (or connectives) such as ∘, ⁻¹, *e*, ∧, ∨, ¬, 0, 1 with specified finite arities
- *L*-algebras consisting of a set A together with functions f^A for each function symbol f of *L*
- the set Fm_L of L-formulas φ, ψ... built from a countably infinite set of variables x, y... and the formula algebra Fm_L

• the set $\operatorname{Eq}_{\mathcal{L}}$ of \mathcal{L} -equations, written $\varphi \approx \psi$.

< 🗇 🕨 < 🖻 🕨 <

- a language *L* consisting of function symbols (or connectives) such as ∘, ⁻¹, *e*, ∧, ∨, ¬, 0, 1 with specified finite arities
- *L*-algebras consisting of a set A together with functions f^A for each function symbol f of *L*
- the set Fm_L of L-formulas φ, ψ... built from a countably infinite set of variables x, y... and the formula algebra Fm_L

• the set $\operatorname{Eq}_{\mathcal{L}}$ of \mathcal{L} -equations, written $\varphi \approx \psi$.

< (17) > < (2) > (17)

A Proof System for Classical Logic

Let $\mathcal L$ be a language with connectives $\wedge,\vee,\rightarrow,\neg,0,1$ and define

 $\mathsf{\Gamma}\vdash_{\mathrm{HCL}}\varphi$

when $\varphi \in \operatorname{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ using the (schematic) rules:

$$\begin{array}{lll} \mathsf{A1.} & \varphi \to (\psi \to \varphi) & \mathsf{A9.} & \varphi \land \psi \to \varphi \\ \mathsf{A2.} & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) & \mathsf{A10.} & \varphi \land \psi \to \varphi \\ \mathsf{A3.} & \neg \neg \varphi \to \varphi & \mathsf{A11.} & \varphi \to \varphi \\ \mathsf{A4.} & (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi) & \mathsf{A12.} & \psi \to \varphi \\ \mathsf{A5.} & \varphi \to (\neg \varphi \to \psi) & \mathsf{A13.} & \neg 1 \to 0 \\ \mathsf{A6.} & 1 \to (\varphi \to \varphi) & \mathsf{A14.} & 0 \to \neg^{-1} \\ \mathsf{A7.} & (\varphi \to \psi) \to ((\varphi \to \chi) \to (\varphi \to \psi \land \chi)) & \mathsf{A15.} & (\varphi \to \varphi \\ \mathsf{A8.} & (\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)) & \end{array}$$

Then \vdash_{HCL} is a finitary consequence relation over $Fm_{\mathcal{L}}$

A Proof System for Classical Logic

Let $\mathcal L$ be a language with connectives $\wedge,\vee,\rightarrow,\neg,0,1$ and define

 $\mathsf{\Gamma}\vdash_{\mathrm{HCL}}\varphi$

when $\varphi \in \operatorname{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ using the (schematic) rules:

$$\begin{array}{lll} \mathsf{A1.} & \varphi \to (\psi \to \varphi) & \mathsf{A9.} & \varphi \land \psi \to \varphi \\ \mathsf{A2.} & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) & \mathsf{A10.} & \varphi \land \psi \to \psi \\ \mathsf{A3.} & \neg \neg \varphi \to \varphi & \mathsf{A11.} & \varphi \to \varphi \lor \psi \\ \mathsf{A4.} & (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi) & \mathsf{A12.} & \psi \to \varphi \lor \psi \\ \mathsf{A5.} & \varphi \to (\neg \varphi \to \psi) & \mathsf{A13.} & \neg 1 \to 0 \\ \mathsf{A6.} & 1 \to (\varphi \to \varphi) & \mathsf{A14.} & 0 \to \neg 1 \\ \mathsf{A7.} & (\varphi \to \psi) \to ((\varphi \to \chi) \to (\varphi \to \psi \land \chi)) & \mathsf{A15.} & (\varphi \to \varphi) \to 1 \\ \mathsf{A8.} & (\varphi \to \chi) \to ((\psi \to \chi) \to (\varphi \lor \psi \to \chi)) & \mathsf{A15.} & \varphi \to \varphi \to \varphi \\ \end{array}$$

$$\frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \text{ (MP)}$$

Then $dash_{_{
m HCL}}$ is a finitary consequence relation over ${
m Fm}_{\mathcal{L}}$

A Proof System for Classical Logic

Let $\mathcal L$ be a language with connectives $\wedge,\vee,\rightarrow,\neg,0,1$ and define

 $\mathsf{\Gamma}\vdash_{\mathrm{HCL}}\varphi$

when $\varphi \in \operatorname{Fm}_{\mathcal{L}}$ is derivable from $\Gamma \subseteq \operatorname{Fm}_{\mathcal{L}}$ using the (schematic) rules:

$$\begin{array}{lll} \mathsf{A1.} & \varphi \to (\psi \to \varphi) & \mathsf{A9.} & \varphi \land \psi \to \varphi \\ \mathsf{A2.} & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) & \mathsf{A10.} & \varphi \land \psi \to \psi \\ \mathsf{A3.} & \neg \neg \varphi \to \varphi & \mathsf{A11.} & \varphi \to \varphi \lor \psi \\ \mathsf{A4.} & (\varphi \to \psi) \to ((\varphi \to \neg \psi) \to \neg \varphi) & \mathsf{A12.} & \psi \to \varphi \lor \psi \\ \mathsf{A5.} & \varphi \to (\neg \varphi \to \psi) & \mathsf{A13.} & \neg 1 \to 0 \\ \mathsf{A6.} & 1 \to (\varphi \to \varphi) & \mathsf{A14.} & 0 \to \neg 1 \\ \mathsf{A7.} & (\varphi \to \psi) \to ((\varphi \to \chi) \to (\varphi \to \psi \land \chi)) & \mathsf{A15.} & (\varphi \to \varphi) \to 1 \\ \end{array}$$

$$rac{arphi \quad arphi
ightarrow \psi}{\psi}$$
 (MP)

Then \vdash_{HCL} is a finitary consequence relation over $Fm_{\mathcal{L}}$.

A **rule** for a set *A* is a set of ordered pairs $(\{a_1, \ldots, a_n\}, a)$ with $\{a_1, \ldots, a_n, a\} \subseteq A$, and a **proof system** C is a set of rules for *A*.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_1, \ldots, b_n where $(\{b_1, \ldots, b_n\}, b)$ is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of a from X.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b_1, \ldots, b_n where $(\{b_1, \ldots, b_n\}, b)$ is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of a from X.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

• is either in X

or has child nodes labelled b₁,..., b_n where ({b₁,..., b_n}, b) is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of a from X.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

• is either in X

or has child nodes labelled b₁,..., b_n where ({b₁,..., b_n}, b) is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of a from X.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

・ロト ・ 同ト ・ ヨト ・ ヨ

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in X
- or has child nodes labelled b₁,..., b_n where ({b₁,..., b_n}, b) is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of a from X.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

・ロト ・ 同ト ・ ヨト ・ ヨ

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in *X*
- or has child nodes labelled b₁,..., b_n where ({b₁,..., b_n}, b) is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of *a* from *X*.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A C-derivation of $a \in A$ from $X \subseteq A$ is a finite tree labelled with members of A such that a labels the root and each node labelled b

- is either in *X*
- or has child nodes labelled b₁,..., b_n where ({b₁,..., b_n}, b) is a member of a rule of C.

We write $X \vdash_{c} a$ if there is a C-derivation of *a* from *X*.

Lemma

 \vdash_{c} is a finitary consequence relation over A.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

$\mathcal{L}\text{-}substitutions$ for a language \mathcal{L} can be defined as endomorphisms

 $\sigma \colon \mathbf{Fm}_{\mathcal{L}} \to \mathbf{Fm}_{\mathcal{L}}$

and extended to $\mathcal{L}\text{-equations}$ by

 $\sigma(\varphi \approx \psi) = \sigma(\varphi) \approx \sigma(\psi).$

A consequence relation \vdash over $Fm_{\mathcal{L}}$ or $Eq_{\mathcal{L}}$ satisfying

 $X \vdash a \implies \sigma(X) \vdash \sigma(a)$ for all \mathcal{L} -substitutions σ

is called **substitution-invariant**.

A (10) A (10)

$\mathcal{L}\text{-substitutions}$ for a language \mathcal{L} can be defined as endomorphisms

 $\sigma \colon \mathbf{Fm}_{\mathcal{L}} \to \mathbf{Fm}_{\mathcal{L}}$

and extended to $\mathcal{L}\text{-equations}$ by

$$\sigma(\varphi \approx \psi) = \sigma(\varphi) \approx \sigma(\psi).$$

A consequence relation \vdash over $Fm_{\mathcal{L}}$ or $Eq_{\mathcal{L}}$ satisfying

 $X \vdash a \implies \sigma(X) \vdash \sigma(a)$ for all \mathcal{L} -substitutions σ

is called **substitution-invariant**.

A (10) A (10)

 $\mathcal{L}\text{-substitutions}$ for a language \mathcal{L} can be defined as endomorphisms

 $\sigma \colon \mathbf{Fm}_{\mathcal{L}} \to \mathbf{Fm}_{\mathcal{L}}$

and extended to \mathcal{L} -equations by

$$\sigma(\varphi \approx \psi) = \sigma(\varphi) \approx \sigma(\psi).$$

A consequence relation \vdash over $Fm_{\mathcal{L}}$ or $Eq_{\mathcal{L}}$ satisfying

 $X \vdash a \implies \sigma(X) \vdash \sigma(a)$ for all \mathcal{L} -substitutions σ

is called **substitution-invariant**.

(二回)) (二回)) (二回))

E SQA

Equational Consequence Relations

Given a class of \mathcal{L} -algebras \mathcal{K} , define for $\Sigma \cup \{\varphi \approx \psi\} \subseteq \operatorname{Eq}_{\mathcal{L}}$:

Lemma

 \vdash_{κ} is a substitution-invariant consequence relation over $Eq_{\mathcal{L}}$. Moreover, if \mathcal{K} is a variety (equational class), then \vdash_{κ} is finitary.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equational Consequence Relations

Given a class of \mathcal{L} -algebras \mathcal{K} , define for $\Sigma \cup \{\varphi \approx \psi\} \subseteq \operatorname{Eq}_{\mathcal{L}}$:

$$\Sigma \vdash_{\kappa} \varphi \approx \psi \quad \iff \quad \text{``whenever the equations in } \Sigma \text{ hold in}$$

$$\Sigma \vdash_{\kappa} \varphi \approx \psi \quad \iff \quad \text{some } \mathbf{A} \in \mathcal{K}, \text{ also } \varphi \approx \psi \text{ holds in } \mathbf{A}^{"}$$
For each $\mathbf{A} \in \mathcal{K}$ and $h: \mathbf{Fm}_{\mathcal{L}} \to \mathbf{A}$

$$h(\varphi') = h(\psi') \implies \quad h(\varphi) = h(\psi).$$
for all $\varphi' \approx \psi' \in \Sigma$

Lemma

 \vdash_{κ} is a substitution-invariant consequence relation over $Eq_{\mathcal{L}}$. Moreover, if \mathcal{K} is a variety (equational class), then \vdash_{κ} is finitary.

イロト イヨト イヨト イヨト

Equational Consequence Relations

Given a class of \mathcal{L} -algebras \mathcal{K} , define for $\Sigma \cup \{\varphi \approx \psi\} \subseteq \operatorname{Eq}_{\mathcal{L}}$:

$$\begin{split} \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff & \text{``whenever the equations in } \Sigma \text{ hold in} \\ \text{some } \mathbf{A} \in \mathcal{K} \text{, also } \varphi \approx \psi \text{ holds in } \mathbf{A}^{"} \\ & \text{For each } \mathbf{A} \in \mathcal{K} \text{ and } h \text{: } \mathbf{Fm}_{\mathcal{L}} \to \mathbf{A} \\ & h(\varphi') = h(\psi') \implies h(\varphi) = h(\psi). \\ & \text{for all } \varphi' \approx \psi' \in \Sigma \end{split}$$

Lemma

 \vdash_{κ} is a substitution-invariant consequence relation over $\operatorname{Eq}_{\mathcal{L}}$. Moreover, if \mathcal{K} is a variety (equational class), then \vdash_{κ} is finitary.

George Metcalfe (University of Bern)

Recall that a **Boolean algebra** (in the same language as HCL) is an algebra $\mathbf{A} = (A, \land, \lor, \rightarrow, \neg, 0, 1)$ such that

• $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice

•
$$a \land \neg a = 0$$
 and $a \lor \neg a = 1$ for all $a \in A$

•
$$a \rightarrow b = \neg a \lor b$$
 for all $a, b \in A$.

Let \mathcal{BA} be the (equational) class of all Boolean algebras. Then $\vdash_{\mathcal{BA}}$ is a finitary substitution-invariant consequence relation.

< 回 ト < 三 ト < 三

Recall that a **Boolean algebra** (in the same language as HCL) is an algebra $\mathbf{A} = (A, \land, \lor, \rightarrow, \neg, 0, 1)$ such that

• $(A, \land, \lor, 0, 1)$ is a bounded distributive lattice

•
$$a \land \neg a = 0$$
 and $a \lor \neg a = 1$ for all $a \in A$

•
$$a \rightarrow b = \neg a \lor b$$
 for all $a, b \in A$.

Let \mathcal{BA} be the (equational) class of all Boolean algebras. Then $\vdash_{\mathcal{BA}}$ is a finitary substitution-invariant consequence relation.

A (10) A (10) A (10)

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{HCL}} \varphi & \longleftrightarrow & \tau(\mathsf{\Gamma}) \vdash_{\mathcal{B}\mathcal{A}} \tau(\varphi) \\ & \Sigma \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi & \longleftrightarrow & \rho(\Sigma) \vdash_{\mathsf{HCL}} \rho(\varphi \approx \psi) \\ & \varphi \vdash_{\mathsf{HCL}} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\mathsf{HCL}} \varphi \\ & \varphi \approx \psi \vdash_{\mathcal{B}\mathcal{A}} \tau(\rho(\varphi \approx \psi)) & \& & \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi. \end{split}$$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{uct} .

George Metcalfe (University of Bern)

イロト イヨト イヨト イヨト

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$\Gamma\vdash_{_{\mathrm{HCL}}}\varphi$	\iff	$\tau(\Gamma) \vdash_{_{\mathcal{B}\mathcal{A}}} \tau(\varphi)$
$\Sigma \vdash_{_{\mathcal{B}\mathcal{A}}} \varphi \approx \psi$		$ ho(\Sigma) \vdash_{_{\mathrm{HCL}}} ho(arphi pprox \psi)$
$\varphi \vdash_{_{\mathrm{HCL}}} \rho(\tau(\varphi))$	&	$\rho(\tau(\varphi)) \vdash_{_{\mathrm{HCL}}} \varphi$
$\varphi \approx \psi \vdash_{\mathcal{BA}} \tau(\rho(\varphi \approx \psi))$	&	$\tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi.$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{HCL} .

- A 🖻 🕨

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{HCL}} \varphi & \iff \quad \tau(\mathsf{\Gamma}) \vdash_{\mathcal{B}\mathcal{A}} \tau(\varphi) \\ \Sigma \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{HCL}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{HCL}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{HCL}} \varphi \\ \varphi \approx \psi \vdash_{\mathcal{B}\mathcal{A}} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi. \end{split}$$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{HCL} .

< 回 ト < 三 ト < 三

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$F \vdash_{\mathrm{HCL}} \varphi$	\iff	$\tau(\Gamma) \vdash_{_{\mathcal{B}\mathcal{A}}} \tau(\varphi)$
$\Sigma \vdash_{_{\mathcal{B}\mathcal{A}}} \varphi \approx \psi$	\iff	$ ho(\Sigma) \vdash_{_{\mathrm{HCL}}} ho(arphi pprox \psi)$
$\varphi \vdash_{_{\mathrm{HCL}}} \rho(\tau(\varphi))$	&	$\rho(\tau(\varphi)) \vdash_{_{\mathrm{HCL}}} \varphi$
$\varphi \approx \psi \vdash_{\mathcal{BA}} \tau(\rho(\varphi \approx \psi))$	&	$\tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi.$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{HCL} .

< 🗇 🕨 < 🖻 🕨

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{HCL}} \varphi & \iff \quad \tau(\mathsf{\Gamma}) \vdash_{\mathcal{B}\mathcal{A}} \tau(\varphi) \\ \Sigma \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{HCL}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{HCL}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{HCL}} \varphi \\ \varphi \approx \psi \vdash_{\mathcal{B}\mathcal{A}} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi. \end{split}$$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{HCL} .

- ∢ ∃ ▶

$$\tau(\varphi) = \{\varphi \approx 1\}$$
 and $\rho(\varphi \approx \psi) = \{\varphi \rightarrow \psi, \psi \rightarrow \varphi\}$

and obtain

$$\begin{split} \Gamma \vdash_{\mathrm{HCL}} \varphi & \iff & \tau(\Gamma) \vdash_{\mathcal{B}\mathcal{A}} \tau(\varphi) \\ \Sigma \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi & \iff & \rho(\Sigma) \vdash_{\mathrm{HCL}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathrm{HCL}} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\mathrm{HCL}} \varphi \\ \varphi \approx \psi \vdash_{\mathcal{B}\mathcal{A}} \tau(\rho(\varphi \approx \psi)) & \& & \tau(\rho(\varphi \approx \psi)) \vdash_{\mathcal{B}\mathcal{A}} \varphi \approx \psi. \end{split}$$

We say that \mathcal{BA} is an "equivalent algebraic semantics" for \vdash_{HCL} .

 $\tau \colon \mathrm{Fm}_{\mathcal{L}} \to \wp(\mathrm{Eq}_{\mathcal{L}}) \qquad \text{and} \qquad \rho \colon \mathrm{Eq}_{\mathcal{L}} \to \wp(\mathrm{Fm}_{\mathcal{L}})$

such that

$$\begin{split} \Gamma \vdash_{\mathsf{L}} \varphi &\iff \tau(\Gamma) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi &\iff \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an equivalent algebraic semantics for \vdash ,

・ロト ・ 四ト ・ ヨト ・ ヨト

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \mathsf{F} \vdash_{\mathsf{L}} \varphi &\iff \tau(\mathsf{F}) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi &\iff \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an equivalent algebraic semantics for \vdash ,

< 🗇 🕨 < 🖻 🕨

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \Gamma \vdash_{\mathsf{L}} \varphi & \iff \quad \tau(\Gamma) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an **equivalent algebraic semantics** for \vdash_{L} .

- ∢ ∃ ▶

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \Gamma \vdash_{\mathsf{L}} \varphi & \iff & \tau(\Gamma) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff & \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& & \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& & \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an **equivalent algebraic semantics** for \vdash_{Γ} .

< 🗇 🕨 < 🖻 🕨

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{L}} \varphi & \iff \quad \tau(\mathsf{\Gamma}) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an **equivalent algebraic semantics** for \vdash_{Γ} .

< 🗇 🕨 < 🖻 🕨

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{L}} \varphi & \iff \quad \tau(\mathsf{\Gamma}) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an equivalent algebraic semantics for \vdash_{Γ} .

$$\tau \colon \operatorname{Fm}_{\mathcal{L}} \to \wp(\operatorname{Eq}_{\mathcal{L}}) \quad \text{and} \quad \rho \colon \operatorname{Eq}_{\mathcal{L}} \to \wp(\operatorname{Fm}_{\mathcal{L}})$$

such that

$$\begin{split} \mathsf{\Gamma} \vdash_{\mathsf{L}} \varphi & \iff \quad \tau(\mathsf{\Gamma}) \vdash_{\kappa} \tau(\varphi) \\ \Sigma \vdash_{\kappa} \varphi \approx \psi & \iff \quad \rho(\Sigma) \vdash_{\mathsf{L}} \rho(\varphi \approx \psi) \\ \varphi \vdash_{\mathsf{L}} \rho(\tau(\varphi)) & \& \quad \rho(\tau(\varphi)) \vdash_{\mathsf{L}} \varphi \\ \varphi \approx \psi \vdash_{\kappa} \tau(\rho(\varphi \approx \psi)) & \& \quad \tau(\rho(\varphi \approx \psi)) \vdash_{\kappa} \varphi \approx \psi. \end{split}$$

 \mathcal{K} is called an equivalent algebraic semantics for \vdash_{L} .

Logic	Equivalent algebraic semantics
Classical logic	Boolean algebras
Intuitionistic logic	Heyting algebras
Modal logics	Boolean algebras with operators
Łukasiewicz logic	MV-algebras
:	÷
BCI logic	not algebraizable!

イロト イヨト イヨト イヨト

$$\tau \colon A_1 \to \wp(A_2) \quad \text{and} \quad \rho \colon A_2 \to \wp(A_1)$$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$$X \vdash_{1} a \iff \tau(X) \vdash_{2} \tau(a)$$

$$Y \vdash_{2} b \iff \rho(Y) \vdash_{1} \rho(b)$$

$$a \vdash_{1} \rho(\tau(a)) \qquad \& \qquad \rho(\tau(a)) \vdash_{1} a$$

$$p \vdash_{2} \tau(\rho(b)) \qquad \& \qquad \tau(\rho(b)) \vdash_{2} b.$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\tau \colon A_1 \to \wp(A_2) \quad \text{and} \quad \rho \colon A_2 \to \wp(A_1)$$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$$\begin{array}{rcl} X \vdash_{1} a & \Longleftrightarrow & \tau(X) \vdash_{2} \tau(a) \\ Y \vdash_{2} b & \Longleftrightarrow & \rho(Y) \vdash_{1} \rho(b) \\ a \vdash_{1} \rho(\tau(a)) & \& & \rho(\tau(a)) \vdash_{1} a \\ b \vdash_{2} \tau(\rho(b)) & \& & \tau(\rho(b)) \vdash_{2} b. \end{array}$$

A (10) A (10) A (10)

$$\tau \colon A_1 \to \wp(A_2)$$
 and $\rho \colon A_2 \to \wp(A_1)$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$X \vdash_{_{1}} a$	\iff	$\tau(\mathbf{X}) \vdash_{\mathtt{2}} \tau(\mathbf{a})$
$Y \vdash_{_2} b$		$\rho(Y) \vdash_1 \rho(b)$
$a \vdash_{_1} \rho(\tau(a))$	&	$\rho(\tau(a)) \vdash_1 a$
$b \vdash_{_2} \tau(\rho(b))$	&	$\tau(\rho(b)) \vdash_2 b.$

$$\tau \colon A_1 \to \wp(A_2)$$
 and $\rho \colon A_2 \to \wp(A_1)$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$X \vdash_{_{1}} a$	\iff	$\tau(\mathbf{X}) \vdash_{\mathtt{2}} \tau(\mathbf{a})$
$Y \vdash_{_2} b$	\iff	$\rho(\boldsymbol{Y}) \vdash_{_{1}} \rho(\boldsymbol{b})$
$\mathbf{a} \vdash_1 \rho(\tau(\mathbf{a}))$	&	$\rho(\tau(a)) \vdash_1 a$
$b \vdash_2 \tau(\rho(b))$	&	$\tau(\rho(b)) \vdash_{2} b.$

$$\tau \colon A_1 \to \wp(A_2)$$
 and $\rho \colon A_2 \to \wp(A_1)$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$X \vdash_{_{1}} a$	\iff	$\tau(\mathbf{X}) \vdash_{\mathtt{2}} \tau(\mathbf{a})$
$Y \vdash_{_2} b$	\iff	$\rho(\boldsymbol{Y}) \vdash_{_{1}} \rho(\boldsymbol{b})$
$a \vdash_{_1} \rho(\tau(a))$	&	$\rho(\tau(a)) \vdash_{_{1}} a$
$b \vdash_{_2} \tau(\rho(b))$	&	$\tau(\rho(b)) \vdash_{2} b.$

$$\tau \colon A_1 \to \wp(A_2)$$
 and $\rho \colon A_2 \to \wp(A_1)$

such that for all $X \cup \{a\} \subseteq A_1$ and $Y \cup \{b\} \subseteq A_2$:

$X \vdash_{_{1}} a$	\iff	$\tau(\mathbf{X}) \vdash_{\mathtt{2}} \tau(\mathbf{a})$
$Y \vdash_{_2} b$	\iff	$\rho(\boldsymbol{Y}) \vdash_{_{1}} \rho(\boldsymbol{b})$
$\pmb{a}\vdash_{_{1}}\rho(\tau(\pmb{a}))$	&	$\rho(\tau(a)) \vdash_{_{1}} a$
$b \vdash_{2} \tau(\rho(b))$	&	$ au(ho(b)) \vdash_{2} b.$

A non-empty set A is called an M-set if there exists a monoid

$$\mathsf{M}=(M,\circ,1)$$

and an operation

$$\star: M \times A \rightarrow A$$

such that for all $\sigma_1, \sigma_2 \in M$ and $a \in A$:

$$(\sigma_1 \circ \sigma_2) \star a = \sigma_1 \star (\sigma_2 \star a).$$

A consequence relation \vdash over *A* is **action-invariant** if for all $\sigma \in M$:

$$X \vdash a \implies \sigma \star X \vdash \sigma \star a$$

A non-empty set A is called an M-set if there exists a monoid

$$\mathsf{M}=(M,\circ,1)$$

and an operation

$$\star: M \times A \rightarrow A$$

such that for all $\sigma_1, \sigma_2 \in M$ and $a \in A$:

$$(\sigma_1 \circ \sigma_2) \star a = \sigma_1 \star (\sigma_2 \star a).$$

A consequence relation \vdash over *A* is **action-invariant** if for all $\sigma \in M$:

$$X \vdash a \implies \sigma \star X \vdash \sigma \star a$$

A non-empty set A is called an M-set if there exists a monoid

$$\mathsf{M}=(M,\circ,1)$$

and an operation

$$\star: M \times A \rightarrow A$$

such that for all $\sigma_1, \sigma_2 \in M$ and $a \in A$:

$$(\sigma_1 \circ \sigma_2) \star a = \sigma_1 \star (\sigma_2 \star a).$$

A consequence relation \vdash over A is **action-invariant** if for all $\sigma \in M$:

$$X \vdash a \implies \sigma \star X \vdash \sigma \star a.$$

Let \vdash_1 and \vdash_2 be action-invariant consequence relations over **M**-sets A_1 and A_2 , respectively.

We say that \vdash_1 and \vdash_2 are **equivalent** if

- \vdash_1 and \vdash_2 are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$\tau^*\colon \wp(A_1)\to \wp(A_2)$$

i.e., for every $\sigma \in M$ and $X \subseteq A_1$

$$\sigma \star \tau(X) = \tau(\sigma \star X).$$

$$\rho^* \colon \wp(A_2) \to \wp(A_2).$$

Let \vdash_1 and \vdash_2 be action-invariant consequence relations over **M**-sets A_1 and A_2 , respectively.

We say that \vdash_1 and \vdash_2 are **equivalent** if

• \vdash_1 and \vdash_2 are similar with transformers τ and ρ

• τ can be extended to an action-invariant map

$$\tau^*\colon \wp(A_1)\to \wp(A_2)$$

i.e., for every $\sigma \in M$ and $X \subseteq A_1$

$$\sigma \star \tau(X) = \tau(\sigma \star X).$$

$$\rho^* \colon \wp(A_2) \to \wp(A_2).$$

Let \vdash_1 and \vdash_2 be action-invariant consequence relations over **M**-sets A_1 and A_2 , respectively.

We say that \vdash_1 and \vdash_2 are **equivalent** if

• \vdash_1 and \vdash_2 are similar with transformers τ and ρ

• τ can be extended to an action-invariant map

 $\tau^*\colon \wp(A_1)\to \wp(A_2)$

i.e., for every $\sigma \in M$ and $X \subseteq A_1$

$$\sigma \star \tau(X) = \tau(\sigma \star X).$$

$$\rho^* \colon \wp(A_2) \to \wp(A_2).$$

Let \vdash_1 and \vdash_2 be action-invariant consequence relations over **M**-sets A_1 and A_2 , respectively.

We say that \vdash_1 and \vdash_2 are **equivalent** if

- \vdash_1 and \vdash_2 are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$\tau^* \colon \wp(A_1) \to \wp(A_2)$$

i.e., for every $\sigma \in M$ and $X \subseteq A_1$

$$\sigma \star \tau(X) = \tau(\sigma \star X).$$

$$\rho^* \colon \wp(A_2) \to \wp(A_2).$$

Let \vdash_1 and \vdash_2 be action-invariant consequence relations over **M**-sets A_1 and A_2 , respectively.

We say that \vdash_1 and \vdash_2 are **equivalent** if

- \vdash_1 and \vdash_2 are similar with transformers τ and ρ
- τ can be extended to an action-invariant map

$$\tau^* \colon \wp(A_1) \to \wp(A_2)$$

i.e., for every $\sigma \in M$ and $X \subseteq A_1$

$$\sigma \star \tau(X) = \tau(\sigma \star X).$$

$$\rho^* \colon \wp(A_2) \to \wp(A_2).$$

W. J. Blok and D. Pigozzi. *Algebraizable logics*. Memoirs of the American Mathematical Society 396, volume 77, 1989.

J. Czelakowski. *Protoalgebraic Logics*. Trends in Logic, volume 10, Kluwer, 2001.

J. M. Font, R. Jansana, and D. Pigozzi. A survey of abstract algebraic logic. *Studia Logica*, 74(1–2):13–97, 2003.

N. Galatos and C. Tsinakis. Equivalence of consequence relations: an order-theoretic and categorical perspective. *Journal of Symbolic Logic* 74(3): 780–210, 2009.

Recall that a **lattice** is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \lor y$: the least upper bound (join) of x and y

or, alternatively, an algebra (L, \land, \lor) satisfying

 $\begin{array}{rcl} x \lor (y \lor z) &\approx & (x \lor y) \lor z & x \land (y \land z) &\approx & (x \land y) \land z \\ x \land y &\approx & y \land x & x \lor y &\approx & y \lor x \\ x \land (x \lor y) &\approx & x & x \lor (x \land y) &\approx & x \end{array}$

where $x \leq y$ stands for $x \wedge y \approx x$.

The class \mathcal{LAT} of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation $\vdash_{\mathcal{LAT}}$.

Recall that a **lattice** is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \lor y$: the least upper bound (join) of x and y

or, alternatively, an algebra (L, \land, \lor) satisfying

 $\begin{array}{rcl} x \lor (y \lor z) &\approx & (x \lor y) \lor z & x \land (y \land z) &\approx & (x \land y) \land z \\ x \land y &\approx & y \land x & x \lor y &\approx & y \lor x \\ x \land (x \lor y) &\approx & x & x \lor (x \land y) &\approx & x \end{array}$

where $x \leq y$ stands for $x \wedge y \approx x$.

The class \mathcal{LAT} of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation $\vdash_{\mathcal{LAT}}$.

Recall that a **lattice** is a poset (L, \leq) containing for all $x, y \in L$

- $x \wedge y$: the greatest lower bound (meet) of x and y
- $x \lor y$: the least upper bound (join) of x and y

or, alternatively, an algebra (L, \land, \lor) satisfying

 $\begin{array}{rcl} x \lor (y \lor z) &\approx & (x \lor y) \lor z & x \land (y \land z) &\approx & (x \land y) \land z \\ x \land y &\approx & y \land x & x \lor y &\approx & y \lor x \\ x \land (x \lor y) &\approx & x & x \lor (x \land y) &\approx & x \end{array}$

where $x \leq y$ stands for $x \wedge y \approx x$.

The class \mathcal{LAT} of all lattices (as algebras) has a corresponding substitution-invariant finitary consequence relation $\vdash_{\mathcal{LAT}}$.

A Proof System Lat for Lattices

Axioms $\overline{\varphi \leq \varphi}$ (ID) Cut rule

$$rac{arphi \leq \chi \quad \chi \leq \psi}{arphi \leq \psi}$$
 (CUT)

Right operational rules

$$\frac{\psi \leq \varphi_1}{\psi \leq \varphi_1 \lor \varphi_2} \ (\Rightarrow \lor)_1$$

$$\frac{\psi \leq \varphi_2}{\psi \leq \varphi_1 \lor \varphi_2} \quad (\Rightarrow \lor)_2$$

$$\frac{\psi \leq \varphi_1 \quad \psi \leq \varphi_2}{\psi \leq \varphi_1 \land \varphi_2} \ (\Rightarrow \land)$$

イロト イ団ト イヨト イヨト

A Proof System Lat for Lattices

Axioms

$$\overline{\varphi \leq \varphi}$$
 (ID)

Left operational rules

$$\frac{\varphi_1 \le \psi}{\varphi_1 \land \varphi_2 \le \psi} \ (\land \Rightarrow)_1$$

$$\frac{\varphi_2 \leq \psi}{\varphi_1 \land \varphi_2 \leq \psi} \ (\land \Rightarrow)_2$$

$$\frac{\varphi_{1} \leq \psi \quad \varphi_{2} \leq \psi}{\varphi_{1} \lor \varphi_{2} \leq \psi} \ (\lor \Rightarrow)$$

Cut rule

$$rac{arphi \leq \chi \quad \chi \leq \psi}{arphi \leq \psi}$$
 (cut)

Right operational rules

$$\frac{\psi \leq \varphi_1}{\psi \leq \varphi_1 \lor \varphi_2} (\Rightarrow \lor)_1$$

$$\frac{\psi \leq \varphi_2}{\psi \leq \varphi_1 \lor \varphi_2} (\Rightarrow \lor)_2$$

$$\frac{\psi \leq \varphi_1 \quad \psi \leq \varphi_2}{\psi \leq \varphi_1 \land \varphi_2} \ (\Rightarrow \land)$$

A Proof System Lat for Lattices

Axioms

$$\frac{\varphi \leq \varphi}{\varphi \leq \varphi} (D)$$
Left operational rules
$$\frac{\varphi_1 \leq \psi}{\varphi_1 \land \varphi_2 \leq \psi} (\land \Rightarrow)_1$$

$$\frac{\varphi_2 \leq \psi}{\varphi_1 \land \varphi_2 \leq \psi} (\land \Rightarrow)_2$$

$$\frac{\varphi_{1} \leq \psi \quad \varphi_{2} \leq \psi}{\varphi_{1} \lor \varphi_{2} \leq \psi} \ (\lor \Rightarrow)$$

Cut rule

$$\frac{\varphi \leq \chi \quad \chi \leq \psi}{\varphi \leq \psi} \ (\text{cut})$$

Right operational rules

$$\frac{\psi \leq \varphi_1}{\psi \leq \varphi_1 \lor \varphi_2} \ (\Rightarrow \lor)_1$$

$$\frac{\psi \leq \varphi_2}{\psi \leq \varphi_1 \lor \varphi_2} (\Rightarrow \lor)_2$$

$$\frac{\psi \leq \varphi_1 \quad \psi \leq \varphi_2}{\psi \leq \varphi_1 \land \varphi_2} \ (\Rightarrow \land)$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Lat-derivations are finite trees labelled with inequations; e.g.

$$\frac{\overline{X \leq X}^{(ID)} \quad \frac{\overline{X \leq X}^{(ID)}}{X \leq X \lor y}}{X \leq X \land (X \lor y)} \stackrel{(\Rightarrow \lor)_{1}}{(\Rightarrow \land)}$$

Lat-derivations are finite trees labelled with inequations; e.g.

$$\frac{\overline{x \leq x}^{(\text{ID})} \quad \frac{\overline{x \leq x}}{x \leq x \vee y}^{(\text{ID})}}{x \leq x \wedge (x \vee y)} \stackrel{(\Rightarrow \vee)_1}{(\Rightarrow \wedge)}$$

э

• • • • • • • • • • • • •

Theorem

 \vdash_{Lat} and \vdash_{LAT} are equivalent with transformers defined by

$$\begin{aligned} \tau(\varphi \approx \psi) &= \{\varphi \leq \psi, \psi \leq \varphi\} \\ \rho(\varphi \leq \psi) &= \{\varphi \land \psi \approx \varphi\}. \end{aligned}$$

George Metcalfe (University of Bern)

A (10) A (10) A (10)

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

$$\Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{LAT}} \varphi \leq \psi.$$

(⇒) By induction on the height of a derivation in Lat. (⇐) We define a binary relation Θ on the lattice formulas Fm by

$$(\varphi,\psi)\in\Theta$$
 \Leftrightarrow $(\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi$ and $\Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

 $\Sigma \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{_{\mathcal{LAT}}} \varphi \leq \psi.$

(⇒) By induction on the height of a derivation in Lat.
 (⇐) We define a binary relation ⊖ on the lattice formulas Fm by

 $(\varphi,\psi)\in\Theta$ \Leftrightarrow $(\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi$ and $\Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

 $\Sigma \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{_{\mathcal{LAT}}} \varphi \leq \psi.$

 (\Rightarrow) By induction on the height of a derivation in Lat.

 (\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$(\varphi,\psi)\in\Theta \qquad \Leftrightarrow \qquad (\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi \quad ext{and} \quad \Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$$

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

 $\Sigma \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{_{\mathcal{LAT}}} \varphi \leq \psi.$

(⇒) By induction on the height of a derivation in Lat.
 (⇐) We define a binary relation Θ on the lattice formulas Fm by

 $(\varphi,\psi)\in\Theta$ \Leftrightarrow $(\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi$ and $\Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

 $\Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{\mathcal{LAT}} \varphi \leq \psi.$

 (\Rightarrow) By induction on the height of a derivation in Lat.

(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$(\varphi,\psi)\in\Theta \qquad \Leftrightarrow \qquad (\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi \quad ext{and} \quad \Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$$

It suffices to show that for any set of inequations $\Sigma \cup \{\varphi \leq \psi\}$:

 $\Sigma \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi \quad \Longleftrightarrow \quad \Sigma \vdash_{_{\mathcal{LAT}}} \varphi \leq \psi.$

 (\Rightarrow) By induction on the height of a derivation in Lat.

(\Leftarrow) We define a binary relation Θ on the lattice formulas Fm by

$$(\varphi,\psi)\in\Theta \qquad \Leftrightarrow \qquad (\Sigma\vdash_{\operatorname{Lat}}\varphi\leq\psi \quad ext{and} \quad \Sigma\vdash_{\operatorname{Lat}}\psi\leq\varphi).$$

 Θ is *reflexive* by (ID), *symmetric* by definition, and *transitive* by (CUT), i.e., an *equivalence relation*. In fact, Θ is a *congruence* on **Fm**. E.g., if $(\varphi_1, \psi_1) \in \Theta$ and $(\varphi_2, \psi_2) \in \Theta$, then $(\varphi_1 \land \varphi_2, \psi_1 \land \psi_2) \in \Theta$ using

$$\frac{\frac{\vdots}{\varphi_{1} \leq \psi_{1}}}{\frac{\varphi_{1} \wedge \varphi_{2} \leq \psi_{1}}{\varphi_{1} \wedge \varphi_{2} \leq \psi_{1}}} \xrightarrow{(\wedge \Rightarrow)_{1}} \frac{\frac{\vdots}{\varphi_{2} \leq \psi_{2}}}{\varphi_{1} \wedge \varphi_{2} \leq \psi_{2}} \xrightarrow{(\wedge \Rightarrow)_{2}} \frac{\frac{\vdots}{\psi_{1} \leq \varphi_{1}}}{(\Rightarrow \wedge)} \qquad \frac{\frac{\vdots}{\psi_{1} \leq \varphi_{1}}}{\frac{\psi_{1} \wedge \psi_{2} \leq \varphi_{1}}{\psi_{1} \wedge \psi_{2} \leq \varphi_{1}}} \xrightarrow{(\wedge \Rightarrow)_{2}} \xrightarrow{(\wedge \Rightarrow)_{2}} \xrightarrow{(\wedge \Rightarrow)_{2}} (\Rightarrow \wedge)$$

$$\frac{\overline{\psi \leq \psi} (\text{ID})}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge \psi \leq \psi} (\wedge \Rightarrow)_2} \frac{\overline{\varphi \leq \varphi} (\text{ID})}{\frac{\varphi \wedge \psi \leq \varphi}{\varphi \wedge \psi \leq \varphi}} (\wedge \Rightarrow)_1 (\Rightarrow \wedge)$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathsf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathsf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{Lat} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

< 回 > < 回 > < 回 >

$$\frac{\overline{\psi \leq \psi} \text{ (ID)}}{\frac{\varphi \wedge \psi \leq \psi}{\varphi \wedge \psi \leq \psi}} (\stackrel{(A \Rightarrow)_2}{\xrightarrow{\varphi \wedge \psi \leq \varphi}} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \leq \psi \wedge \varphi}} (\stackrel{(A \Rightarrow)_1}{(A \Rightarrow)_1} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \leq \psi \wedge \varphi}} (\stackrel{(A \Rightarrow)_1}{(A \Rightarrow)_1} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \leq \psi \wedge \varphi}} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi \wedge \psi}} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi \wedge \psi}} (\stackrel{(A \Rightarrow)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi \wedge \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi \otimes \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \vee \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \wedge \psi}} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \vee \psi} (\stackrel{(A \otimes)_1}{\xrightarrow{\varphi \vee \psi}} (\stackrel{(A$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathbf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathbf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{Lat} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$\frac{\frac{\overline{\psi \leq \psi}}{\varphi \land \psi \leq \psi} (ID)}{\frac{\varphi \leq \psi}{\varphi \land \psi \leq \psi} (\land \Rightarrow)_{2}} \frac{\overline{\varphi \leq \varphi}}{\varphi \land \psi \leq \varphi} (ID) (\land \Rightarrow)_{1}}{(\Rightarrow \land)}$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathsf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathsf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{\text{Lat}} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

$$\frac{\overline{\psi \leq \psi} (ID)}{\varphi \land \psi \leq \psi} (\land \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \land \psi \leq \varphi} (ID) (\land \Rightarrow)_{1} \\ \frac{\overline{\varphi \leq \psi}}{\varphi \land \psi \leq \psi \land \varphi} (\land \Rightarrow)_{1} (\Rightarrow \land)$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathsf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathsf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{\text{Lat}} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

< 🗇 🕨 < 🖻 🕨

$$\frac{\overline{\psi \leq \psi} (ID)}{\varphi \land \psi \leq \psi} (\land \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \land \psi \leq \varphi} (ID) (\land \Rightarrow)_{1} \\ \frac{\overline{\varphi \leq \psi}}{\varphi \land \psi \leq \psi \land \varphi} (\land \Rightarrow)_{1} (\Rightarrow \land)$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathsf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathsf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{\text{Lat}} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

< 🗇 🕨 < 🖻 🕨

$$\frac{\overline{\psi \leq \psi} (ID)}{\varphi \land \psi \leq \psi} (\land \Rightarrow)_{2} \quad \frac{\overline{\varphi \leq \varphi}}{\varphi \land \psi \leq \varphi} (ID) (\land \Rightarrow)_{1} \\ \frac{\overline{\varphi \leq \psi}}{\varphi \land \psi \leq \psi \land \varphi} (\land \Rightarrow)_{1} (\Rightarrow \land)$$

Finally, observe that

$$\begin{split} \varphi/\Theta \leq^{\mathsf{Fm}/\Theta} \psi/\Theta & \Leftrightarrow \quad \varphi/\Theta \wedge^{\mathsf{Fm}/\Theta} \psi/\Theta = (\varphi \wedge \psi)/\Theta = \varphi/\Theta \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \wedge \psi \leq \varphi \quad \text{and} \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \varphi \wedge \psi \\ & \Leftrightarrow \quad \Sigma \vdash_{\mathsf{Lat}} \varphi \leq \psi. \end{split}$$

So if $\Sigma \not\vdash_{Lat} \varphi \leq \psi$, then $\Sigma \not\vdash_{\mathcal{LAT}} \varphi \leq \psi$.

Now let Lat[°] be Lat without (CUT), and let $d \vdash_{\text{Lat[°]}} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat[°].

Theorem

 $\textit{If} \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi, \textit{ then } \vdash_{_{\mathrm{Lat}^{\mathrm{o}}}} \varphi \leq \psi.$

Proof sketch. Applications of (CUT) can be *eliminated* from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish...

Induction hypothesis. We show that

 $(d_1 \vdash_{_{\mathrm{Lat}^\circ}} \varphi \leq \chi \quad \text{and} \quad d_2 \vdash_{_{\mathrm{Lat}^\circ}} \chi \leq \psi) \implies \vdash_{_{\mathrm{Lat}^\circ}} \varphi \leq \psi$

by induction on the sum of the heights of the derivations d_1 and d_2 .

Base case. If d_1 ends with (ID), then $\chi = \varphi$ and d_2 is the required Lat^o-derivation of $\varphi \leq \psi$ (similarly, if d_2 ends with (ID)).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ.

Now let Lat[°] be Lat without (CUT), and let $d \vdash_{\text{Lat[°]}} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat[°].

Theorem

 $\textit{If} \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi, \textit{ then } \vdash_{_{\mathrm{Lat}^{\circ}}} \varphi \leq \psi.$

Proof sketch. Applications of (CUT) can be *eliminated* from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish...

Induction hypothesis. We show that

 $(\mathbf{d}_1 \vdash_{\mathsf{Lat}^\circ} \varphi \leq \chi \quad \text{and} \quad \mathbf{d}_2 \vdash_{\mathsf{Lat}^\circ} \chi \leq \psi) \implies \vdash_{\mathsf{Lat}^\circ} \varphi \leq \psi$

by induction on the sum of the heights of the derivations d_1 and d_2 .

Base case. If d_1 ends with (ID), then $\chi = \varphi$ and d_2 is the required Lat^o-derivation of $\varphi \leq \psi$ (similarly, if d_2 ends with (ID)).

Now let Lat[°] be Lat without (CUT), and let $d \vdash_{\text{Lat[°]}} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat[°].

Theorem

 $\textit{If} \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi, \textit{ then } \vdash_{_{\mathrm{Lat}^{\circ}}} \varphi \leq \psi.$

Proof sketch. Applications of (CUT) can be *eliminated* from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish...

Induction hypothesis. We show that

 $(\mathbf{\textit{d}}_{1}\vdash_{_{\mathrm{Lat}^{\circ}}}\varphi\leq\chi\quad\text{and}\quad\mathbf{\textit{d}}_{2}\vdash_{_{\mathrm{Lat}^{\circ}}}\chi\leq\psi)\quad\Longrightarrow\quad\vdash_{_{\mathrm{Lat}^{\circ}}}\varphi\leq\psi$

by induction on the sum of the heights of the derivations d_1 and d_2 .

Base case. If d_1 ends with (ID), then $\chi = \varphi$ and d_2 is the required Lat^o-derivation of $\varphi \leq \psi$ (similarly, if d_2 ends with (ID)).

Now let Lat[°] be Lat without (CUT), and let $d \vdash_{\text{Lat[°]}} \varphi \leq \psi$ denote that d is a derivation of $\varphi \leq \psi$ in Lat[°].

Theorem

 $\textit{If} \vdash_{_{\mathrm{Lat}}} \varphi \leq \psi, \textit{ then } \vdash_{_{\mathrm{Lat}^{\circ}}} \varphi \leq \psi.$

Proof sketch. Applications of (CUT) can be *eliminated* from a Lat-derivation of $\varphi \leq \psi$ by pushing them upwards until they vanish...

Induction hypothesis. We show that

 $(\textit{\textbf{d}}_1 \vdash_{_{\mathrm{Lat}^\circ}} \varphi \leq \chi \quad \text{and} \quad \textit{\textbf{d}}_2 \vdash_{_{\mathrm{Lat}^\circ}} \chi \leq \psi) \quad \Longrightarrow \ \vdash_{_{\mathrm{Lat}^\circ}} \varphi \leq \psi$

by induction on the sum of the heights of the derivations d_1 and d_2 .

Base case. If d_1 ends with (ID), then $\chi = \varphi$ and d_2 is the required Lat^o-derivation of $\varphi \leq \psi$ (similarly, if d_2 ends with (ID)).

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}} \underset{\varphi \leq \psi}{(\Rightarrow \wedge)} \quad \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi} \underset{(\text{CUT})}{(\Rightarrow \wedge)_{1}} \implies \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi} \underset{(\text{CUT})}{(\Rightarrow \wedge)_{1}} \xrightarrow{(\Rightarrow \wedge)_{1}} \frac{\varphi \leq \chi_{1}}{\varphi \leq \psi} \underset{(\text{CUT})}{(\Rightarrow \wedge)_{1}} \xrightarrow{(\Rightarrow \wedge)_{1}} \frac{\varphi \leq \chi_{1}}{\varphi \leq \psi} \underset{(x \neq 1)}{(x \neq 1)} \xrightarrow{(x \neq 1)} \frac{\varphi \leq \chi_{1}}{\varphi \leq \psi} \underset{(x \neq 1)}{(x \neq 1)} \xrightarrow{(x \neq 1)} \frac{\varphi \leq \chi_{1}}{\varphi \leq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \leq \chi_{1}}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \neq \varphi \neq \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \varphi \neq \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \varphi \neq \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \varphi \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \varphi \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac{\varphi \varphi}{\varphi \neq \psi} \xrightarrow{(x \neq 1)} \frac$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$\frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\varphi_{2} \leq \chi}}{\frac{\varphi_{1} \vee \varphi_{2} \leq \chi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\vee \Rightarrow)} \quad \frac{\vdots}{\chi \leq \psi} \xrightarrow{(\text{cut})} \implies \frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\frac{\varphi_{1} \leq \chi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\text{cut})} \frac{\frac{\vdots}{\varphi_{2} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\varphi_{2} \leq \psi} \xrightarrow{(\vee \Rightarrow)} \xrightarrow{(\vee \to)} \xrightarrow{(\vee \to)$$

4 A N

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}}_{(\Rightarrow \wedge)} \quad \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi}_{(\text{CUT})} \quad \Longrightarrow \quad \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi}_{(\text{CUT})}$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$\frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\varphi_{2} \leq \chi}}{\frac{\varphi_{1} \vee \varphi_{2} \leq \chi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\vee \Rightarrow)} \quad \frac{\vdots}{\chi \leq \psi} \xrightarrow{(\text{cut})} \qquad \Longrightarrow \qquad \frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\frac{\varphi_{1} \leq \psi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\text{cut})} \quad \frac{\frac{\vdots}{\varphi_{2} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\frac{\varphi_{2} \leq \psi}{\varphi_{2} \leq \psi}} \xrightarrow{(\vee \Rightarrow)} \xrightarrow{(\text{cut})} \xrightarrow{(\vee \Rightarrow)} \xrightarrow{(\vee \to)} \xrightarrow{$$

- 4 ∃ →

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}}_{(\Rightarrow \wedge)} \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi}}_{(\land \Rightarrow)_{1}} \implies \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi}}{\varphi \leq \psi} (CUT)$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$\frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\varphi_{2} \leq \chi}}{\frac{\varphi_{1} \vee \varphi_{2} \leq \chi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\vee \Rightarrow)} \quad \frac{\vdots}{\chi \leq \psi} \xrightarrow{(\text{cut})} \qquad \Longrightarrow \qquad \frac{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\frac{\varphi_{1} \leq \psi}{\varphi_{1} \vee \varphi_{2} \leq \psi}} \xrightarrow{(\text{cut})} \quad \frac{\frac{\vdots}{\varphi_{2} \leq \chi} \quad \frac{\vdots}{\chi \leq \psi}}{\frac{\varphi_{2} \leq \psi}{\varphi_{2} \leq \psi}} \xrightarrow{(\vee \Rightarrow)} \xrightarrow{(\text{cut})} \xrightarrow{(\vee \Rightarrow)} \xrightarrow{(\vee \to)} \xrightarrow{$$

- 4 ∃ →

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}} \xrightarrow[(\Rightarrow \wedge)]{(\Rightarrow \wedge)} \quad \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi} \xrightarrow[(cur)]{(cur)} \qquad \Longrightarrow \quad \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \quad \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi} \xrightarrow[(cur)]{(cur)}$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

Inductive step. There are two cases:

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}}_{(\Rightarrow \wedge)} \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi}}_{(\land \Rightarrow)_{1}} \implies \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi}}{\varphi \leq \psi} (CUT)$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$\frac{\vdots}{\underbrace{\varphi_{1} \leq \chi}} \quad \underbrace{\frac{\vdots}{\varphi_{2} \leq \chi}}{\underbrace{\varphi_{1} \lor \varphi_{2} \leq \chi}} \quad (\lor \Rightarrow) \quad \underbrace{\vdots}_{\chi \leq \psi} \quad (\mathsf{curr}) \qquad \Longrightarrow \qquad \underbrace{\frac{\vdots}{\varphi_{1} \leq \chi} \quad \underbrace{\frac{\vdots}{\chi \leq \psi}}{\underbrace{\varphi_{1} \leq \psi}} \quad (\mathsf{curr}) \quad \underbrace{\frac{\vdots}{\varphi_{2} \leq \chi} \quad \underbrace{\frac{\vdots}{\chi \leq \psi}}{\varphi_{2} \leq \psi} \quad (\lor)}_{(\lor \Rightarrow)}$$

George Metcalfe (University of Bern)

. .

< ロ > < 同 > < 回 > < 回 >

Inductive step. There are two cases:

(1) The "cut-formula" χ is decomposed in both premises, e.g.

$$\frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\varphi \leq \chi_{2}}}{\frac{\varphi \leq \chi_{1} \wedge \chi_{2}}{\varphi \leq \psi}}_{(\Rightarrow \wedge)} \frac{\frac{\vdots}{\chi_{1} \leq \psi}}{\chi_{1} \wedge \chi_{2} \leq \psi}}_{(\land \Rightarrow)_{1}} \implies \frac{\frac{\vdots}{\varphi \leq \chi_{1}} \frac{\vdots}{\chi_{1} \leq \psi}}{\varphi \leq \psi}}{\varphi \leq \psi} (CUT)$$

(2) The "cut-formula" χ is not decomposed in one premise, e.g.

$$\begin{array}{c|c} \vdots & \vdots \\ \hline \varphi_1 \leq \chi & \varphi_2 \leq \chi \\ \hline \varphi_1 \vee \varphi_2 \leq \chi \\ \hline \varphi_1 \vee \varphi_2 \leq \psi \end{array}^{(\vee \Rightarrow)} & \vdots \\ \hline \chi \leq \psi \\ \hline \varphi_1 \vee \varphi_2 \leq \psi \end{array} \xrightarrow{(\cup \forall)} (\operatorname{cur}) \qquad \Longrightarrow \quad \begin{array}{c|c} \vdots \\ \hline \varphi_1 \leq \chi & \chi \leq \psi \\ \hline \varphi_1 \leq \psi \\ \hline \varphi_1 \vee \varphi_2 \leq \psi \\ \hline \varphi_1 \vee \varphi_2 \leq \psi \end{array} \xrightarrow{(\vee \Rightarrow)} (\vee \Rightarrow) \end{array}$$

< ロ > < 同 > < 回 > < 回 >

Corollary

The equational theory of lattices is decidable.

We also obtain results for free lattices, e.g., Whitman's condition $\vdash_{\mathcal{LAT}} \varphi_1 \land \varphi_2 \leq \psi_1 \lor \psi_2 \implies \vdash_{\mathcal{LAT}} \varphi_1 \leq \psi_1 \lor \psi_2, \vdash_{\mathcal{LAT}} \varphi_2 \leq \psi_1 \lor \psi_2$ $\vdash_{\mathcal{LAT}} \varphi_1 \land \varphi_2 \leq \psi_1, \text{ or } \vdash_{\mathcal{LAT}} \varphi_1 \land \varphi_2 \leq \psi_2$

• • • • • • • • • • • •

Corollary

The equational theory of lattices is decidable.

We also obtain results for free lattices, e.g., Whitman's condition

$$\begin{array}{ccc} \vdash_{_{\mathcal{LAT}}} \varphi_1 \wedge \varphi_2 \leq \psi_1 \vee \psi_2 & \Longrightarrow & \vdash_{_{\mathcal{LAT}}} \varphi_1 \leq \psi_1 \vee \psi_2, \ \vdash_{_{\mathcal{LAT}}} \varphi_2 \leq \psi_1 \vee \psi_2 \\ & \vdash_{_{\mathcal{LAT}}} \varphi_1 \wedge \varphi_2 \leq \psi_1, \ \text{ or } \ \vdash_{_{\mathcal{LAT}}} \varphi_1 \wedge \varphi_2 \leq \psi_2. \end{array}$$

A D M A A A M M

- 4 ∃ →

Part II

Substructural Logics & Residuated Lattices

George Metcalfe (University of Bern)

Ordered Algebras and Logic

May 2013 35 / 65

We consider...

- on the logical side, substructural logics,
- on the algebraic side, residuated lattices,
- and the mutually beneficial relationship between the two.

Substructural logics are logics that in some sense – they defy precise definition – live "beneath the surface" of classical logic.

Motivated by considerations from *linguistics*, *algebra*, *set theory*, *philosophy*, and *computer science*, they all reject at least one classically valid "structural rule".

(The expression "substructural logic" was proposed by Kosta Došen and Peter Schroeder-Heister at a conference in Tübingen in 1990.)

A B F A B F

Substructural logics are logics that in some sense – they defy precise definition – live "beneath the surface" of classical logic.

Motivated by considerations from *linguistics*, *algebra*, *set theory*, *philosophy*, and *computer science*, they all reject at least one classically valid "structural rule".

(The expression "substructural logic" was proposed by Kosta Došen and Peter Schroeder-Heister at a conference in Tübingen in 1990.)

A sequent will be an ordered pair of sequences of formulas, written

 $\varphi_1,\ldots,\varphi_n \Rightarrow \psi_1,\ldots,\psi_m$

and possibly understood as

"if all of $\varphi_1, \ldots, \varphi_n$ are true, then one of ψ_1, \ldots, ψ_m is true".

We call such a sequent **single-conclusion** when $m \leq 1$.

< 回 ト < 三 ト < 三

A sequent will be an ordered pair of sequences of formulas, written

$$\varphi_1,\ldots,\varphi_n \Rightarrow \psi_1,\ldots,\psi_m$$

and possibly understood as

"if all of $\varphi_1, \ldots, \varphi_n$ are true, then one of ψ_1, \ldots, ψ_m is true".

We call such a sequent **single-conclusion** when $m \leq 1$.

A sequent will be an ordered pair of sequences of formulas, written

$$\varphi_1,\ldots,\varphi_n \Rightarrow \psi_1,\ldots,\psi_m$$

and possibly understood as

"if all of $\varphi_1, \ldots, \varphi_n$ are true, then one of ψ_1, \ldots, ψ_m is true".

We call such a sequent **single-conclusion** when $m \leq 1$.

A (10) A (10)

A sequent will be an ordered pair of sequences of formulas, written

$$\varphi_1,\ldots,\varphi_n \Rightarrow \psi_1,\ldots,\psi_m$$

and possibly understood as

"if all of $\varphi_1, \ldots, \varphi_n$ are true, then one of ψ_1, \ldots, ψ_m is true".

We call such a sequent **single-conclusion** when $m \leq 1$.

A (10) A (10)

A Sequent Calculus GCL

Initial sequents

 $\overline{\varphi \Rightarrow \varphi}$ (ID)

Left structural rules

$$\frac{\Gamma_{1},\varphi,\psi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\psi,\varphi,\Gamma_{2}\Rightarrow\Delta}$$
(EL)

 $\frac{\Gamma_1, \Gamma_2 \Rightarrow \Delta}{\Gamma_1, \varphi, \Gamma_2 \Rightarrow \Delta}$ (WL)

 $\frac{\Gamma_{1},\varphi,\varphi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi,\Gamma_{2}\Rightarrow\Delta} \ (CL)$

Cut rule

$$\frac{\Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \varphi, \Gamma_3 \Rightarrow \Delta_1}{\Gamma_1, \Gamma_2, \Gamma_3 \Rightarrow \Delta_1, \Delta_2} \ (CUT)$$

Right structural rules

$$\frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \psi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \psi, \varphi, \Delta_{2}}$$
(ER)

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2}$$
 (WR)

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi, \varphi, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2} \ (CR)$$

George Metcalfe (University of Bern)

Ordered Algebras and Logic

▲ 注 ト 注 の Q (ペ) May 2013 39 / 65

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

A Sequent Calculus GCL

Initial sequents

$$\frac{1}{\varphi \Rightarrow \varphi}$$
 (ID)

Cut rule

$$\frac{\Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \varphi, \Gamma_3 \Rightarrow \Delta_1}{\Gamma_1, \Gamma_2, \Gamma_3 \Rightarrow \Delta_1, \Delta_2} \ (CUT)$$

Left structural rules

$$\frac{\Gamma_{1},\varphi,\psi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\psi,\varphi,\Gamma_{2}\Rightarrow\Delta} \text{ (EL)}$$

$$\frac{\Gamma_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi,\Gamma_{2}\Rightarrow\Delta} (WL)$$

$$\frac{\Gamma_{1},\varphi,\varphi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi,\Gamma_{2}\Rightarrow\Delta} \ (CL)$$

Right structural rules

$$\frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \psi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \psi, \varphi, \Delta_{2}} \ (\text{ER})$$

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2} \ (WR)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi, \varphi, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2} \ (CR)$$

George Metcalfe (University of Bern)

A Sequent Calculus GCL

Initial sequents

$$\frac{1}{\varphi \Rightarrow \varphi}$$
 (ID)

Cut rule

$$\frac{\Gamma_{2} \Rightarrow \varphi, \Delta_{2} \quad \Gamma_{1}, \varphi, \Gamma_{3} \Rightarrow \Delta_{1}}{\Gamma_{1}, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta_{1}, \Delta_{2}} \quad (CUT)$$

Left structural rules

$$\frac{\Gamma_{1},\varphi,\psi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\psi,\varphi,\Gamma_{2}\Rightarrow\Delta} \text{ (EL)}$$

$$\frac{\Gamma_1, \Gamma_2 \Rightarrow \Delta}{\Gamma_1, \varphi, \Gamma_2 \Rightarrow \Delta}$$
(WL)

$$\frac{\Gamma_{1},\varphi,\varphi,\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi,\Gamma_{2}\Rightarrow\Delta} \ (CL)$$

Right structural rules

$$\frac{\Gamma \Rightarrow \Delta_{1}, \varphi, \psi, \Delta_{2}}{\Gamma \Rightarrow \Delta_{1}, \psi, \varphi, \Delta_{2}} \ (\text{ER})$$

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2} \ (WR)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi, \varphi, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi, \Delta_2} \ (CR)$$

George Metcalfe (University of Bern)

$$\frac{\Gamma_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},1,\Gamma_{2}\Rightarrow\Delta}~(1\Rightarrow)~~0\Rightarrow~(0\Rightarrow)$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\wedge\Rightarrow)_{i}\ i=1,2$$

 $\frac{\Gamma_{1},\varphi_{1},\Gamma_{2}\Rightarrow\Delta\quad\Gamma_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\lor\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\lor\Rightarrow)$

 $\begin{array}{l} \Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta_1 \\ \Gamma_1, \Gamma_2, \varphi \rightarrow \psi, \Gamma_3 \Rightarrow \Delta_1, \Delta_2 \end{array} (\Rightarrow \Rightarrow)$

Right operational rules

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, 0, \Delta_2} \ (\Rightarrow 0)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_1, \Delta_2 \quad \Gamma \Rightarrow \Delta_1, \varphi_2, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \land \varphi_2, \Delta_2} \ (\Rightarrow \land)$$

 $\frac{\Gamma \Rightarrow \Delta_1, \varphi_i, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \lor \varphi_2, \Delta_2} \ (\Rightarrow \lor)_i \ i = 1, 2$

 $\frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \ (\Rightarrow \rightarrow)$

$$\frac{\Gamma_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},1,\Gamma_{2}\Rightarrow\Delta} \ (1\Rightarrow) \qquad \frac{1}{0\Rightarrow} \ (0\Rightarrow)$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\wedge\Rightarrow)_{i}\ i=1,2$$

 $\frac{\Gamma_{1},\varphi_{1},\Gamma_{2}\Rightarrow\Delta\quad\Gamma_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\lor\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\lor\Rightarrow)$

 $\begin{array}{l} \Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta_1 \\ \Gamma_1, \Gamma_2, \varphi \rightarrow \psi, \Gamma_3 \Rightarrow \Delta_1, \Delta_2 \end{array} (\Rightarrow \Rightarrow)$

Right operational rules

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, 0, \Delta_2} \ (\Rightarrow 0)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_1, \Delta_2 \quad \Gamma \Rightarrow \Delta_1, \varphi_2, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \land \varphi_2, \Delta_2} \ (\Rightarrow \land)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_i, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \lor \varphi_2, \Delta_2} \ (\Rightarrow \lor)_i \ i = 1, 2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \ (\Rightarrow \rightarrow)$$

$$\frac{\Gamma_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},1,\Gamma_{2}\Rightarrow\Delta} (1\Rightarrow) \qquad \frac{1}{0\Rightarrow} (0\Rightarrow)$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\wedge\Rightarrow)_{i}\ i=1,2$$

$$\frac{\Gamma_{1},\varphi_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\lor\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\lor\Rightarrow)$$

 $\begin{array}{l} \Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta_1 \\ \Gamma_1, \Gamma_2, \varphi \rightarrow \psi, \Gamma_3 \Rightarrow \Delta_1, \Delta_2 \end{array} (\rightarrow \Rightarrow)$

Right operational rules

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, 0, \Delta_2} \ (\Rightarrow 0)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_1, \Delta_2 \quad \Gamma \Rightarrow \Delta_1, \varphi_2, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \land \varphi_2, \Delta_2} \ (\Rightarrow \land)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_i, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \lor \varphi_2, \Delta_2} \ (\Rightarrow \lor)_i \ i = 1, 2$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$\frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \ (\Rightarrow \rightarrow)$$

_

$$\frac{\Gamma_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},1,\Gamma_{2}\Rightarrow\Delta} (1\Rightarrow) \qquad \frac{1}{0\Rightarrow} (0\Rightarrow)$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}\ (\wedge\Rightarrow)_{i}\ i=1,2$$

$$\frac{\Gamma_{1},\varphi_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\lor\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\lor\Rightarrow)$$

$$\frac{\Gamma_2 \Rightarrow \varphi, \Delta_2 \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta_1}{\Gamma_1, \Gamma_2, \varphi \to \psi, \Gamma_3 \Rightarrow \Delta_1, \Delta_2} (\to \Rightarrow)$$

Right operational rules

$$\frac{\Gamma \Rightarrow \Delta_1, \Delta_2}{\Gamma \Rightarrow \Delta_1, 0, \Delta_2} \ (\Rightarrow 0)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_1, \Delta_2 \quad \Gamma \Rightarrow \Delta_1, \varphi_2, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \land \varphi_2, \Delta_2} \ (\Rightarrow \land)$$

$$\frac{\Gamma \Rightarrow \Delta_1, \varphi_i, \Delta_2}{\Gamma \Rightarrow \Delta_1, \varphi_1 \lor \varphi_2, \Delta_2} \ (\Rightarrow \lor)_i \ i = 1, 2$$

イロト イヨト イヨト イヨト

$$\frac{\varphi, \Gamma \Rightarrow \psi, \Delta}{\Gamma \Rightarrow \varphi \rightarrow \psi, \Delta} \ (\Rightarrow \rightarrow)$$

_

Ordered Algebras and Logic

æ May 2013 41/65

- E

イロト イヨト イヨト

-

<⊡> < ≣>

May 2013 41 / 65

ъ

Ordered Algebras and Logic

э 41/65 May 2013

-

____ ▶ - ∢ ∃ ▶

Ordered Algebras and Logic

3 41/65 May 2013

< ∃ >

< (17) > < (17) > (17)

$$\begin{array}{c} \displaystyle \frac{\overline{\varphi \Rightarrow \varphi} \left(\text{ID} \right)}{\varphi \Rightarrow \psi, \varphi} \left(\text{WR} \right) \\ \displaystyle \frac{\overline{\varphi \Rightarrow \varphi} \left(\text{ID} \right)}{\Rightarrow \varphi \rightarrow \psi, \varphi} \left(\text{WR} \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi, \varphi}{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi, \varphi} \left(\text{CR} \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow \left((\varphi \rightarrow \psi) \rightarrow \varphi \right) \rightarrow \varphi} \left(\text{SH} \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow \left((\varphi \rightarrow \psi) \rightarrow \varphi \right) \rightarrow \varphi} \left(\text{SH} \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow \left((\varphi \rightarrow \psi) \rightarrow \varphi \right) \rightarrow \varphi} \left(\text{SH} \right) \\ \left(\Rightarrow \phi \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow \left((\varphi \rightarrow \psi) \rightarrow \varphi \right) \rightarrow \varphi} \left(\text{SH} \right) \\ \left(\Rightarrow \phi \right) \\ \displaystyle \frac{(\varphi \rightarrow \psi) \rightarrow \varphi \Rightarrow \varphi}{\Rightarrow \left((\varphi \rightarrow \psi) \rightarrow \varphi \right) \rightarrow \varphi} \left(\Rightarrow \phi \right) \\ \left(\Rightarrow \phi \right$$

Ordered Algebras and Logic

・ ヨークへぐMay 2013 41 / 65

イロト イヨト イヨト イヨト

A sequent calculus GIL for **intuitionistic logic** is obtained by restricting the rules of GCL to single-conclusion sequents.

For example, we obtain implication rules

$$\frac{\Gamma_2 \Rightarrow \varphi \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta}{\Gamma_1, \Gamma_2, \varphi \to \psi, \Gamma_3 \Rightarrow \Delta} \ (\to \Rightarrow)$$

$$\frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \rightarrow \psi} \ (\Rightarrow \rightarrow)$$

and lose the contraction right rule (CR).

A sequent calculus GIL for **intuitionistic logic** is obtained by restricting the rules of GCL to single-conclusion sequents.

For example, we obtain implication rules

$$\frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \rightarrow \psi, \Gamma_{3} \Rightarrow \Delta} \ (\rightarrow \Rightarrow) \qquad \qquad \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \rightarrow \psi} \ (\Rightarrow \rightarrow)$$

and lose the contraction right rule (CR).

The rules for \land in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\cdot\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\cdot\Rightarrow) \qquad \frac{\Gamma_{1}\Rightarrow\varphi_{1},\Delta_{1}\quad\Gamma_{2}\Rightarrow\varphi_{2},\Delta_{2}}{\Gamma_{1},\Gamma_{2}\Rightarrow\varphi_{1}\cdot\varphi_{2},\Delta_{1},\Delta_{2}} (\Rightarrow\cdot)$$

These are inter-derivable in LJ and LK, e.g.

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{2}}{(\wedge\Rightarrow)_{1}}$$

$$\frac{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{1}}{(\mathsf{CL})}$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (WL) (\cdot\Rightarrow)$$

- A B M A B M

but not if we drop structural rules...

The rules for \land in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\cdot\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\cdot\Rightarrow) \qquad \frac{\Gamma_{1}\Rightarrow\varphi_{1},\Delta_{1}\quad\Gamma_{2}\Rightarrow\varphi_{2},\Delta_{2}}{\Gamma_{1},\Gamma_{2}\Rightarrow\varphi_{1}\cdot\varphi_{2},\Delta_{1},\Delta_{2}} (\Rightarrow\cdot)$$

These are inter-derivable in LJ and LK, e.g.

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{2}}{(\wedge\Rightarrow)_{1}}$$

$$\frac{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{1}}{(\mathsf{CL})}$$

$$\frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (WL) (\cdot\Rightarrow)$$

but not if we drop structural rules...

The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\cdot\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\cdot\Rightarrow) \qquad \frac{\Gamma_{1}\Rightarrow\varphi_{1},\Delta_{1}\quad\Gamma_{2}\Rightarrow\varphi_{2},\Delta_{2}}{\Gamma_{1},\Gamma_{2}\Rightarrow\varphi_{1}\cdot\varphi_{2},\Delta_{1},\Delta_{2}} (\Rightarrow\cdot)$$

These are inter-derivable in LJ and LK, e.g.

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{2}}{(\wedge\Rightarrow)_{1}}$$

$$\frac{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{1}}{(\mathsf{CL})}$$

ut not if we drop structural rules...

A B b 4 B b

The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\cdot\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\cdot\Rightarrow) \qquad \frac{\Gamma_{1}\Rightarrow\varphi_{1},\Delta_{1}\quad\Gamma_{2}\Rightarrow\varphi_{2},\Delta_{2}}{\Gamma_{1},\Gamma_{2}\Rightarrow\varphi_{1}\cdot\varphi_{2},\Delta_{1},\Delta_{2}} (\Rightarrow\cdot)$$

These are inter-derivable in LJ and LK, e.g.

$$\frac{\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\wedge\Rightarrow)_{2}}{(\wedge\Rightarrow)_{1}} \qquad \qquad \frac{\Gamma_{1},\varphi_{i},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} \xrightarrow{(\vee\downarrow)}{(\vee\downarrow)}$$
(WL)

but not if we drop structural rules...

The rules for \wedge in GCL correspond to the first "additive" meaning of conjunction, but we could also define a "multiplicative" conjunction by

$$\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\cdot\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (\cdot\Rightarrow) \qquad \frac{\Gamma_{1}\Rightarrow\varphi_{1},\Delta_{1}\quad\Gamma_{2}\Rightarrow\varphi_{2},\Delta_{2}}{\Gamma_{1},\Gamma_{2}\Rightarrow\varphi_{1}\cdot\varphi_{2},\Delta_{1},\Delta_{2}} (\Rightarrow\cdot)$$

These are inter-derivable in LJ and LK, e.g.

$$\frac{\frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1}\wedge\varphi_{2},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}}{(\wedge\Rightarrow)_{2}} \qquad \qquad \frac{\Gamma_{1},\varphi_{1},\varphi_{2},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{(\wedge\Rightarrow)_{1}} \qquad \qquad \frac{\Gamma_{1},\varphi_{1},\Gamma_{2}\Rightarrow\Delta}{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (WL) \qquad \qquad \frac{\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta}{(\Gamma_{1},\varphi_{1},\varphi_{2},\Gamma_{2}\Rightarrow\Delta} (WL) \qquad \qquad \frac{\Gamma_{1},\varphi_{1},\varphi_{2},\varphi_{2}\Rightarrow\Delta}{(\times\Rightarrow)} (WL)$$

but not if we drop structural rules...

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.

E.g., relevant logics denying "paradoxes of strict implication" like

$$\varphi
ightarrow (\psi \lor \neg \psi)$$
 and $(\varphi \land \neg \varphi)
ightarrow \psi$

are obtained by removing the weakening rules and adding rules for \cdot .

The most famous relevant logic R (which admits distributivity) requires a more complicated sequent framework, however.

< 回 > < 三 > < 三 >

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.

E.g., relevant logics denying "paradoxes of strict implication" like

$$\varphi \to (\psi \lor \neg \psi) \quad \text{and} \quad (\varphi \land \neg \varphi) \to \psi$$

are obtained by removing the weakening rules and adding rules for \cdot .

The most famous relevant logic R (which admits distributivity) requires a more complicated sequent framework, however.

A (10) A (10)

Some substructural logics may be obtained by dropping structural rules from GCL and GIL and adding rules for splitting connectives.

E.g., relevant logics denying "paradoxes of strict implication" like

$$\varphi \to (\psi \lor \neg \psi) \quad \text{and} \quad (\varphi \land \neg \varphi) \to \psi$$

are obtained by removing the weakening rules and adding rules for \cdot .

The most famous relevant logic R (which admits distributivity) requires a more complicated sequent framework, however.

- ∢ ∃ ▶

In the 1920's, Jan Łukasiewicz introduced logics with $n \ge 3$ truth values and an infinite-valued logic with truth values in [0, 1], where negation and implication are interpreted by the truth functions

$$\neg x = 1 - x$$
 and $x \rightarrow y = \min(1, 1 - x + y)$.

Contraction fails, since the following formula is not valid (constantly 1):

$$(\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi).$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

In the 1920's, Jan Łukasiewicz introduced logics with $n \ge 3$ truth values and an infinite-valued logic with truth values in [0, 1], where negation and implication are interpreted by the truth functions

$$\neg x = 1 - x$$
 and $x \rightarrow y = \min(1, 1 - x + y)$.

Contraction fails, since the following formula is not valid (constantly 1):

$$(\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi).$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

In the 1920's, Jan Łukasiewicz introduced logics with $n \ge 3$ truth values and an infinite-valued logic with truth values in [0, 1], where negation and implication are interpreted by the truth functions

$$\neg x = 1 - x$$
 and $x \rightarrow y = \min(1, 1 - x + y)$.

Contraction fails, since the following formula is not valid (constantly 1):

$$(\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi).$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

In the 1920's, Jan Łukasiewicz introduced logics with $n \ge 3$ truth values and an infinite-valued logic with truth values in [0, 1], where negation and implication are interpreted by the truth functions

$$\neg x = 1 - x$$
 and $x \rightarrow y = \min(1, 1 - x + y)$.

Contraction fails, since the following formula is not valid (constantly 1):

$$(\varphi \to (\varphi \to \psi)) \to (\varphi \to \psi).$$

These and related contraction-free logics have been used to model vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be presented as substructural logics in a hypersequent framework.

Other "resource-based" substructural logics are obtained by dropping both weakening and contraction rules.

Girard's **linear logic** also adds rules for the special connectives ! "of course" and ? "why not" that recover structural properties, e.g.

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!\Rightarrow) \qquad \qquad \frac{!\Gamma \Rightarrow \varphi, ?\Delta}{!\Gamma \Rightarrow !\varphi, ?\Delta} (\Rightarrow!)$$
$$\frac{\Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!WL) \qquad \qquad \frac{!\varphi, !\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!CL)$$

Other "resource-based" substructural logics are obtained by dropping both weakening and contraction rules.

Girard's **linear logic** also adds rules for the special connectives ! "of course" and ? "why not" that recover structural properties, e.g.

$$\frac{\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!\Rightarrow) \qquad \qquad \frac{!\Gamma \Rightarrow \varphi, ?\Delta}{!\Gamma \Rightarrow !\varphi, ?\Delta} (\Rightarrow!)$$
$$\frac{\Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!WL) \qquad \qquad \frac{!\varphi, !\varphi, \Gamma \Rightarrow \Delta}{!\varphi, \Gamma \Rightarrow \Delta} (!CL)$$

Lambek's calculus for **grammatical types** has "division operators" \setminus and /, where, e.g., the intransitive verb "works" has type $n \setminus s$ and the adjective "poor" has type n/n (with n = noun phrase and s = sentence).

The rules for \setminus and / are obtained as alternative rules for implication:

$$\frac{\Gamma_2 \Rightarrow \varphi \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta}{\Gamma_1, \Gamma_2, \varphi \setminus \psi, \Gamma_3 \Rightarrow \Delta} (\setminus \Rightarrow) \qquad \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \setminus \psi} (\Rightarrow \setminus)$$

$$\frac{\Gamma_2 \Rightarrow \varphi \quad \Gamma_1, \psi, \Gamma_3 \Rightarrow \Delta}{\Gamma_1, \psi/\varphi, \Gamma_2, \Gamma_3 \Rightarrow \Delta} (/ \Rightarrow) \qquad \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \psi/\varphi} (\Rightarrow /)$$

The **Full Lambek Calculus** FL consists of GIL without any structural rules but extended with rules for \cdot , \setminus , and /.

A B F A B F

Lambek's calculus for **grammatical types** has "division operators" \setminus and /, where, e.g., the intransitive verb "works" has type $n \setminus s$ and the adjective "poor" has type n/n (with n = noun phrase and s = sentence).

The rules for \backslash and / are obtained as alternative rules for implication:

$$\begin{array}{ll} \frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \backslash \psi, \Gamma_{3} \Rightarrow \Delta} \ (\backslash \Rightarrow) & \qquad \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \backslash \psi} \ (\Rightarrow \backslash) \\ \\ \frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \psi / \varphi, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta} \ (/ \Rightarrow) & \qquad \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \psi / \varphi} \ (\Rightarrow /) \end{array}$$

The **Full Lambek Calculus** FL consists of GIL without any structural rules but extended with rules for \cdot , \setminus , and /.

Lambek's calculus for **grammatical types** has "division operators" \setminus and /, where, e.g., the intransitive verb "works" has type $n \setminus s$ and the adjective "poor" has type n/n (with n = noun phrase and s = sentence).

The rules for \backslash and / are obtained as alternative rules for implication:

$$\begin{array}{ll} \frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \Gamma_{2}, \varphi \backslash \psi, \Gamma_{3} \Rightarrow \Delta} \ (\backslash \Rightarrow) & \qquad \frac{\varphi, \Gamma \Rightarrow \psi}{\Gamma \Rightarrow \varphi \backslash \psi} \ (\Rightarrow \backslash) \\ \\ \frac{\Gamma_{2} \Rightarrow \varphi \quad \Gamma_{1}, \psi, \Gamma_{3} \Rightarrow \Delta}{\Gamma_{1}, \psi / \varphi, \Gamma_{2}, \Gamma_{3} \Rightarrow \Delta} \ (/ \Rightarrow) & \qquad \frac{\Gamma, \varphi \Rightarrow \psi}{\Gamma \Rightarrow \psi / \varphi} \ (\Rightarrow /) \end{array}$$

The **Full Lambek Calculus** FL consists of GIL without any structural rules but extended with rules for \cdot , \setminus , and /.

Typically, FL extended appropriately with exchange (*e*), weakening (*w*), and contraction (*c*) rules is denoted by FL_S for $S \subseteq \{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} \text{ (MIX)} \qquad \frac{\Gamma, \Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \Delta} \text{ (GC)}$$

We can also explore substructural logics in richer frameworks; e.g., hypersequents, display logic, nested sequents...

< 回 > < 三 > < 三 >

Typically, FL extended appropriately with exchange (*e*), weakening (*w*), and contraction (*c*) rules is denoted by FL_S for $S \subseteq \{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} \text{ (MIX) } \qquad \frac{\Gamma, \Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \Delta} \text{ (GC)}$$

We can also explore substructural logics in richer frameworks; e.g., hypersequents, display logic, nested sequents...

Typically, FL extended appropriately with exchange (*e*), weakening (*w*), and contraction (*c*) rules is denoted by FL_S for $S \subseteq \{e, w, c\}$.

However, we are not limited to these structural rules; consider, e.g.

$$\frac{\Gamma_1 \Rightarrow \Delta_1 \quad \Gamma_2 \Rightarrow \Delta_2}{\Gamma_1, \Gamma_2 \Rightarrow \Delta_1, \Delta_2} \text{ (MIX) } \qquad \frac{\Gamma, \Gamma \Rightarrow \Delta, \Delta}{\Gamma \Rightarrow \Delta} \text{ (GC)}$$

We can also explore substructural logics in richer frameworks; e.g., hypersequents, display logic, nested sequents...

Each sequent calculus C gives rise to a **consequence relation** \vdash_c over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup \{S\}$:

$$\Theta \vdash_{_{\mathsf{FL}}} S \iff S$$
 is derivable from Θ in FL.

But what is a suitable algebraic semantics for FL?

∃ >

Each sequent calculus C gives rise to a **consequence relation** \vdash_c over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup \{S\}$:

$$\Theta \vdash_{_{\mathrm{FL}}} S \iff S$$
 is derivable from Θ in FL.

But what is a suitable algebraic semantics for FL?

Each sequent calculus C gives rise to a **consequence relation** \vdash_c over the set of all sequents of the language.

In particular, for a set of sequents $\Theta \cup \{S\}$:

$$\Theta \vdash_{_{\mathsf{FL}}} S \iff S$$
 is derivable from Θ in FL.

But what is a suitable algebraic semantics for FL?

$$\mathbf{A} = (\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, \mathbf{1})$$

such that

- (A, \land, \lor) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

 $x \le z/y \quad \Leftrightarrow \quad x \cdot y \le z \quad \Leftrightarrow \quad y \le x \setminus z.$

An **FL-algebra** is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with 0 = 1.

A B K A B K

$$\mathbf{A} = (\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, \mathbf{1})$$

such that

- (A, \land, \lor) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

 $x \leq z/y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \setminus z.$

An **FL-algebra** is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with 0 = 1.

$$\mathbf{A} = (\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, \mathbf{1})$$

such that

- (A, \land, \lor) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

 $x \leq z/y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \setminus z.$

An **FL-algebra** is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with 0 = 1.

$$\mathbf{A} = (\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, \mathbf{1})$$

such that

- (A, \land, \lor) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

 $x \leq z/y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \setminus z.$

An **FL-algebra** is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with 0 = 1.

$$\mathbf{A} = (\mathbf{A}, \wedge, \vee, \cdot, \backslash, /, \mathbf{1})$$

such that

- (A, \land, \lor) is a lattice
- $(A, \cdot, 1)$ is a monoid
- and for all $x, y, z \in A$

 $x \leq z/y \quad \Leftrightarrow \quad x \cdot y \leq z \quad \Leftrightarrow \quad y \leq x \setminus z.$

An **FL-algebra** is a residuated lattice with an extra nullary operation 0. We can also regard a residuated lattice as an FL-algebra with 0 = 1.

(4) (5) (4) (5)

 $x \cdot y \approx y \cdot x$

and therefore also

 $x \setminus y \approx y/x.$

So in this case, we just write \rightarrow for either \setminus or /.

Consider, for example:

 $(\mathbb{Z}, \min, \max, +, -, 0).$

A (10) F (10)

 $x \cdot y \approx y \cdot x$

and therefore also

 $x \setminus y \approx y/x$.

So in this case, we just write \rightarrow for either \setminus or /.

Consider, for example:

 $(\mathbb{Z}, \min, \max, +, -, 0).$

- A 🖻 🕨

 $x \cdot y \approx y \cdot x$

and therefore also

 $x \setminus y \approx y/x.$

So in this case, we just write \rightarrow for either \setminus or /.

Consider, for example:

 $(\mathbb{Z}, \min, \max, +, -, 0).$

George Metcalfe (University of Bern)

Ordered Algebras and Logic

May 2013 51 / 65

 $x \cdot y \approx y \cdot x$

and therefore also

 $x \setminus y \approx y/x.$

So in this case, we just write \rightarrow for either \setminus or /.

Consider, for example:

 $(\mathbb{Z}, \min, \max, +, -, 0).$

Let **R** be a unital ring and I(R) the lattice of two-sided ideals of **R**.

Consider the operations for $I, J \in I(R)$:

$$I \cdot J = \{\sum_{k=1}^{n} a_k b_k \mid a_k \in I; b_k \in J; n \ge 1\}$$
$$I \setminus J = \{x \in R \mid Ix \subseteq J\}$$
$$J / I = \{x \in R \mid xI \subseteq J\}.$$

Then we obtain an FL-algebra:

$$I(\mathbf{R}) = (I(\mathbf{R}), \cap, \vee, \cdot, \setminus, /, \mathbf{R}, \{\mathbf{0}\}).$$

< 🗇 🕨 < 🖃 🕨

Let **R** be a unital ring and I(R) the lattice of two-sided ideals of **R**. Consider the operations for $I, J \in I(R)$:

$$I \cdot J = \{\sum_{k=1}^{n} a_k b_k \mid a_k \in I; b_k \in J; n \ge 1\}$$
$$I \setminus J = \{x \in R \mid Ix \subseteq J\}$$
$$J / I = \{x \in R \mid xI \subseteq J\}.$$

Then we obtain an FL-algebra:

$$I(\mathbf{R}) = (I(\mathbf{R}), \cap, \vee, \cdot, \setminus, /, \mathbf{R}, \{\mathbf{0}\}).$$

Let **R** be a unital ring and I(R) the lattice of two-sided ideals of **R**. Consider the operations for $I, J \in I(R)$:

$$I \cdot J = \{\sum_{k=1}^{n} a_k b_k \mid a_k \in I; b_k \in J; n \ge 1\}$$
$$I \setminus J = \{x \in R \mid Ix \subseteq J\}$$
$$J / I = \{x \in R \mid xI \subseteq J\}.$$

Then we obtain an FL-algebra:

$$\mathrm{I}(\mathbf{R}) = (\mathrm{I}(\mathbf{R}), \cap, \vee, \cdot, \setminus, /, \mathbf{R}, \{\mathbf{0}\}).$$

The class \mathcal{FL} of FL-algebras is a **variety** defined by the equations for lattices and monoids together with

 $\begin{aligned} x \cdot (y \lor z) &\approx (x \cdot y) \lor (x \cdot z) \\ x \backslash y &\leq x \backslash (y \lor z) \\ x \cdot (x \backslash y) &\leq y \leq x \backslash (x \cdot y) \end{aligned}$

 $(y \lor z) \cdot x \approx (y \cdot x) \lor (z \cdot x)$ $y/x \le (y \lor z)/x$ $(y/x) \cdot x \le y \le (y \cdot x)/x.$

A (10) > A (10) > A (10)

The class \mathcal{FL} of FL-algebras is a **variety** defined by the equations for lattices and monoids together with

$$\begin{array}{ll} x \cdot (y \lor z) \approx (x \cdot y) \lor (x \cdot z) & (y \lor z) \cdot x \approx (y \cdot x) \lor (z \cdot x) \\ x \backslash y \leq x \backslash (y \lor z) & y / x \leq (y \lor z) / x \\ x \cdot (x \backslash y) \leq y \leq x \backslash (x \cdot y) & (y / x) \cdot x \leq y \leq (y \cdot x) / x. \end{array}$$

< 🗇 🕨 < 🖻 🕨

Up to term-equivalence...

• Heyting algebras are commutative FL-algebras satisfying

 $x \cdot y \approx x \wedge y$ and $0 \leq x$.

• **Boolean algebras** are Heyting algebras satisfying $(\neg x = x \rightarrow 0)$

 $\neg \neg X \approx X.$

• Lattice-ordered groups are residuated lattices satisfying

 $x \cdot (1/x) \approx 1.$

• MV-algebras are commutative FL-algebras satisfying

 $x \lor y \approx (x \to y) \to y$ and $0 \le x$.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Up to term-equivalence...

• Heyting algebras are commutative FL-algebras satisfying

 $x \cdot y \approx x \wedge y$ and $0 \leq x$.

• Boolean algebras are Heyting algebras satisfying $(\neg x = x \rightarrow 0)$

 $\neg \neg x \approx x.$

• Lattice-ordered groups are residuated lattices satisfying

 $x \cdot (1/x) \approx 1.$

• MV-algebras are commutative FL-algebras satisfying

$$x \lor y \approx (x \to y) \to y$$
 and $0 \le x$.

Up to term-equivalence...

• Heyting algebras are commutative FL-algebras satisfying

 $x \cdot y \approx x \wedge y$ and $0 \leq x$.

• Boolean algebras are Heyting algebras satisfying $(\neg x = x \rightarrow 0)$

 $\neg \neg x \approx x.$

Lattice-ordered groups are residuated lattices satisfying

 $x \cdot (1/x) \approx 1.$

• MV-algebras are commutative FL-algebras satisfying

 $x \lor y \approx (x \to y) \to y$ and $0 \le x$.

Up to term-equivalence...

• Heyting algebras are commutative FL-algebras satisfying

 $x \cdot y \approx x \wedge y$ and $0 \leq x$.

• Boolean algebras are Heyting algebras satisfying $(\neg x = x \rightarrow 0)$

 $\neg \neg x \approx x.$

Lattice-ordered groups are residuated lattices satisfying

$$x \cdot (1/x) \approx 1.$$

• MV-algebras are commutative FL-algebras satisfying

$$x \lor y \approx (x \to y) \to y$$
 and $0 \le x$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

 $\vdash_{_{FL}}$ and $\vdash_{_{FL}}$ are equivalent with transformers defined by

$$\tau(\varphi \approx \psi) = \{\varphi \Rightarrow \psi, \psi \Rightarrow \varphi\}$$
$$\rho(\varphi_1, \dots, \varphi_n \Rightarrow \psi) = \{\varphi_1 \cdot \dots \cdot \varphi_n \leq \psi\}$$
$$\rho(\varphi_1, \dots, \varphi_n \Rightarrow) = \{\varphi_1 \cdot \dots \cdot \varphi_n \leq \mathbf{0}\}$$

where $\varphi_1 \cdot \ldots \cdot \varphi_n$ is 1 when n = 0.

イロト イ団ト イヨト イヨト

For a given class of FL-algebras $\mathcal{K},$ we might ask. . .

- is the **equational theory** of \mathcal{K} decidable? ($\vdash_{\kappa} \varphi \approx \psi$ for a given \mathcal{L} -equation $\varphi \approx \psi$?)
- is the **quasiequational theory** of $\mathcal K$ decidable?

 $(\Sigma \vdash_{\kappa} \varphi \approx \psi \text{ for a given finite set of } \mathcal{L}\text{-equations } \Sigma \cup \{\varphi \approx \psi\}?)$

We can tackle these problems using tools from both logic and algebra.

A (10) > A (10) > A (10)

For a given class of FL-algebras \mathcal{K} , we might ask...

• is the equational theory of \mathcal{K} decidable?

($\vdash_{\kappa} \varphi \approx \psi$ for a given *L*-equation $\varphi \approx \psi$?)

is the quasiequational theory of *K* decidable?
 (Σ ⊢_r φ ≈ ψ for a given finite set of *L*-equations Σ ∪ {φ ≈ ψ

We can tackle these problems using tools from both logic and algebra.

→ □ > < □ > < □</p>

For a given class of FL-algebras \mathcal{K} , we might ask...

• is the equational theory of \mathcal{K} decidable?

 $(\vdash_{\kappa} \varphi \approx \psi \text{ for a given } \mathcal{L}\text{-equation } \varphi \approx \psi$?)

• is the **quasiequational theory** of *K* decidable?

 $(\Sigma \vdash_{\kappa} \varphi \approx \psi \text{ for a given finite set of } \mathcal{L}\text{-equations } \Sigma \cup \{\varphi \approx \psi\}?)$

We can tackle these problems using tools from both logic and algebra.

E SQA

For a given class of FL-algebras \mathcal{K} , we might ask...

• is the equational theory of \mathcal{K} decidable?

 $(\vdash_{\kappa} \varphi \approx \psi \text{ for a given } \mathcal{L}\text{-equation } \varphi \approx \psi$?)

• is the **quasiequational theory** of *K* decidable?

 $(\Sigma \vdash_{\kappa} \varphi \approx \psi \text{ for a given finite set of } \mathcal{L}\text{-equations } \Sigma \cup \{\varphi \approx \psi\}?)$

We can tackle these problems using tools from both logic and algebra.

- Decidability of the equational theory of *FL* follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly but not always immediately for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory...

< 回 > < 三 > < 三 >

- Decidability of the equational theory of *FL* follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly but not always immediately for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory...

.

- Decidability of the equational theory of *FL* follows immediately (as in the case of lattices) from a proof of cut elimination for FL.
- Decidability follows similarly but not always immediately for other varieties of FL-algebras.
- However, it can be difficult to find a suitable calculus or perhaps cut-elimination does not help with decidability... Also, this method does not give decidability of the quasiequational theory...

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L} -algebras has the finite model property (FMP) if

 $\forall_{\mathcal{K}} \ \varphi \approx \psi \qquad \Longrightarrow \qquad \forall_{\mathbf{A}} \ \varphi \approx \psi \quad \text{ for some finite } \mathbf{A} \in \mathcal{K}$

and the **strong finite model property** (SFMP) if (for Σ finite)

 $\Sigma \not\vdash_{\kappa} \varphi \approx \psi \qquad \Longrightarrow \qquad \Sigma \not\vdash_{\mathsf{A}} \varphi \approx \psi \quad \text{for some finite } \mathsf{A} \in \mathcal{K}.$

Lemma

If \mathcal{K} is finitely axiomatizable, then

 $\mathsf{FMP} \implies \mathsf{the equational theory of } \mathcal{K} \mathsf{ is decidable}$

 $\mathsf{SFMP} \implies$ the quasiequational theory of $\mathcal K$ is decidable.

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L} -algebras has the finite model property (FMP) if

 $\forall_{\kappa} \varphi \approx \psi \qquad \Longrightarrow \qquad \forall_{\mathbf{A}} \varphi \approx \psi \quad \text{for some finite } \mathbf{A} \in \mathcal{K}$

and the strong finite model property (SFMP) if (for Σ finite)

 $\Sigma \not\vdash_{\kappa} \varphi \approx \psi \qquad \Longrightarrow \qquad \Sigma \not\vdash_{\mathbf{A}} \varphi \approx \psi \quad \text{for some finite } \mathbf{A} \in \mathcal{K}.$

Lemma

If \mathcal{K} is finitely axiomatizable, then

 $\mathsf{FMP} \implies \mathsf{the equational theory of } \mathcal{K} \mathsf{ is decidable}$

SFMP \implies the quasiequational theory of $\mathcal K$ is decidable.

The (Strong) Finite Model Property

A class \mathcal{K} of \mathcal{L} -algebras has the finite model property (FMP) if

 $\forall_{\kappa} \ \varphi \approx \psi \qquad \Longrightarrow \qquad \forall_{\mathbf{A}} \ \varphi \approx \psi \quad \text{ for some finite } \mathbf{A} \in \mathcal{K}$

and the strong finite model property (SFMP) if (for Σ finite)

 $\Sigma \not\vdash_{\kappa} \varphi \approx \psi \qquad \Longrightarrow \qquad \Sigma \not\vdash_{\mathbf{A}} \varphi \approx \psi \quad \text{for some finite } \mathbf{A} \in \mathcal{K}.$

Lemma

If \mathcal{K} is finitely axiomatizable, then

 $\mathsf{FMP} \implies \mathsf{the equational theory of } \mathcal{K} \mathsf{ is decidable}$

SFMP \implies the quasiequational theory of \mathcal{K} is decidable.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

${\cal K}$ has the finite embeddability property (FEP) if

B is a finite partial	\implies	B embeds into
subalgebra of $oldsymbol{A}\in\mathcal{K}$		some finite $\mathbf{C} \in \mathcal{K}$.

Lemma

If \mathcal{K} has the FEP, then \mathcal{K} has the SFMP and if it is also finitely axiomatizable, its quasiequational theory is decidable.

< 🗇 🕨 < 🖻 🕨

${\cal K}$ has the finite embeddability property (FEP) if

B is a finite partial	\implies	B embeds into
subalgebra of $oldsymbol{A}\in\mathcal{K}$		some finite $\mathbf{C} \in \mathcal{K}$.

Lemma

If \mathcal{K} has the FEP, then \mathcal{K} has the SFMP and if it is also finitely axiomatizable, its quasiequational theory is decidable.

George Metcalfe (University of Bern)

Ordered Algebras and Logic

May 2013 59 / 65

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

• • • • • • • • • • • •

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

イロト イヨト イヨト イヨト

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

< ロ > < 同 > < 回 > < 回 >

The variety \mathcal{HA} of Heyting algebras has the FEP.

Proof.

Let **B** be a finite partial subalgebra of some $\mathbf{A} \in \mathcal{HA}$. Then the lattice **D** generated by $B \cup \{0, 1\}$ is a finitely generated distributive lattice and hence finite. Since the \land in any finite distributive lattice is residuated, **D** can be viewed as a Heyting algebra. Moreover, the partially defined residuum operation of **B** coincides (where defined) with the residuum of the meet of **D**, so **B** can be embedded into this algebra.

More complicated constructions have been introduced by Blok and Van Alten that establish the FEP for many classes of FL-algebras.

A class of \mathcal{L} -algebras \mathcal{K} has the **amalgamation property** (AP) if for all $\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{K}$ and embeddings *i* and *j* of **A** into **B** and **C**, there exist $\mathbf{D} \in \mathcal{K}$ and embeddings *h*, *k* of **B** and **C** into **D** such that $h \circ i = k \circ j$.

The Deductive Interpolation Property

${\cal K}$ has the deductive interpolation property (DIP) if whenever

 $\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi$

there exists a set of equations Δ satisfying

- $\operatorname{Var}(\Delta) \subseteq \operatorname{Var}(\Sigma) \cap \operatorname{Var}(\varphi \approx \psi)$ (Var(X) denotes the variables of X)
- $\Sigma \vdash_{\kappa} \Delta$
- $\Delta \vdash_{\kappa} \varphi \approx \psi$.

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 $\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi$

there exists a set of equations Δ satisfying

- $Var(\Delta) \subseteq Var(\Sigma) \cap Var(\varphi \approx \psi)$ (Var(X) denotes the variables of X)
- $\Sigma \vdash_{\kappa} \Delta$
- $\bullet \ \Delta \vdash_{\kappa} \varphi \approx \psi.$

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

 $\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi$

there exists a set of equations Δ satisfying

- $Var(\Delta) \subseteq Var(\Sigma) \cap Var(\varphi \approx \psi)$ (Var(X) denotes the variables of X)
- $\Sigma \vdash_{\mathcal{K}} \Delta$
- $\Delta \vdash_{\kappa} \varphi \approx \psi$.

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

 $\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi$

there exists a set of equations Δ satisfying

- $Var(\Delta) \subseteq Var(\Sigma) \cap Var(\varphi \approx \psi)$ (Var(X) denotes the variables of X)
- $\Sigma \vdash_{\mathcal{K}} \Delta$
- $\Delta \vdash_{\kappa} \varphi \approx \psi$.

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

 $\Sigma \vdash_{\mathcal{K}} \varphi \approx \psi$

there exists a set of equations Δ satisfying

- $Var(\Delta) \subseteq Var(\Sigma) \cap Var(\varphi \approx \psi)$ (Var(X) denotes the variables of X)
- $\Sigma \vdash_{\mathcal{K}} \Delta$
- $\Delta \vdash_{\kappa} \varphi \approx \psi$.

Theorem

A variety of commutative FL-algebras has the AP iff it has the DIP.

Establishing the AP

Theorem

The variety \mathcal{HA} of Heyting algebras has the AP.

Proof.

It suffices to show that \mathcal{HA} has the DIP using the calculus GIL. Namely, we can prove that whenever

$$\vdash_{\text{GIL}} \Gamma_1, \Gamma_2 \Rightarrow \varphi$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}(\Gamma_1) \cap \operatorname{Var}(\Gamma_2, \varphi)$
- $\bullet \vdash_{\rm GIL} \mathsf{\Gamma}_1 \Rightarrow \psi$
- $\bullet \, \vdash_{_{\rm GIL}} {\sf \Gamma}_{\rm 2}, \psi \Rightarrow \varphi$

by induction on the height of a cut-free derivation of $\Gamma_1, \Gamma_2 \Rightarrow \varphi$.

イロト イ団ト イヨト イヨ

Theorem

The variety \mathcal{HA} of Heyting algebras has the AP.

Proof.

It suffices to show that \mathcal{HA} has the DIP using the calculus GIL. Namely, we can prove that whenever

$$\vdash_{\rm GIL} \mathsf{\Gamma}_1, \mathsf{\Gamma}_2 \Rightarrow \varphi$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}(\Gamma_1) \cap \operatorname{Var}(\Gamma_2, \varphi)$
- $\bullet \vdash_{\rm GIL} \mathsf{\Gamma}_1 \Rightarrow \psi$

$$\bullet \vdash_{\mathrm{GIL}} \mathsf{\Gamma}_{\mathbf{2}}, \psi \Rightarrow \varphi$$

by induction on the height of a cut-free derivation of $\Gamma_1, \Gamma_2 \Rightarrow \varphi$

イロト イヨト イヨト イヨト

Theorem

The variety \mathcal{HA} of Heyting algebras has the AP.

Proof.

It suffices to show that \mathcal{HA} has the DIP using the calculus GIL. Namely, we can prove that whenever

$$\vdash_{\text{GIL}} \mathsf{F}_1, \mathsf{F}_2 \Rightarrow \varphi$$

there exists a formula ψ satisfying

• $\operatorname{Var}(\psi) \subseteq \operatorname{Var}(\Gamma_1) \cap \operatorname{Var}(\Gamma_2, \varphi)$

$$\bullet \vdash_{\text{GIL}} \mathsf{\Gamma}_1 \Rightarrow \psi$$

$$\bullet \vdash_{\mathrm{GIL}} \mathsf{F}_{\mathbf{2}}, \psi \Rightarrow \varphi$$

by induction on the height of a cut-free derivation of $\Gamma_1, \Gamma_2 \Rightarrow \varphi$

< ロ > < 同 > < 回 > < 回 >

Theorem

The variety \mathcal{HA} of Heyting algebras has the AP.

Proof.

It suffices to show that ${\cal HA}$ has the DIP using the calculus GIL. Namely, we can prove that whenever

$$\vdash_{\text{GIL}} \mathsf{\Gamma}_1, \mathsf{\Gamma}_2 \Rightarrow \varphi$$

there exists a formula ψ satisfying

- $\operatorname{Var}(\psi) \subseteq \operatorname{Var}(\Gamma_1) \cap \operatorname{Var}(\Gamma_2, \varphi)$
- $\bullet \, \vdash_{_{\rm GIL}} {\sf \Gamma}_1 \Rightarrow \psi$

$$\bullet \vdash_{\mathsf{GIL}} \mathsf{F}_{\mathbf{2}}, \psi \Rightarrow \varphi$$

by induction on the height of a cut-free derivation of $\Gamma_1, \Gamma_2 \Rightarrow \varphi$.

< ロ > < 同 > < 回 > < 回 >

- Relationships between logic and algebra, developed via consequence relations, can be fruitful on both sides.
- A current hot topic is the question of when "good" proof systems for logics / classes of algebras exist, and what role duality and relational semantics play in all of this.

- Relationships between logic and algebra, developed via consequence relations, can be fruitful on both sides.
- A current hot topic is the question of when "good" proof systems for logics / classes of algebras exist, and what role duality and relational semantics play in all of this.

イロト イヨト イヨト イヨト