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Logic and Mathematics

We know that mathematicians care no more for logic than

logicians for mathematics. The two eyes of science are

mathematics and logic; the mathematical sect puts out the

logical eye, the logical sect puts out the mathematical eye;

each believing that it sees better with one eye than with two.

AUGUSTUS DE MORGAN
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Logic and Algebra

From the textbook definition of a group

we can obtain a set of first-order sentences

Γ = {(∀x)(∀y)(∀z)(x ◦ (y ◦ z) ≈ (x ◦ y) ◦ z),

(∃x)(∀y)(y ◦ x ≈ y & (∃z)(y ◦ z ≈ x))}

and ask about its consequences, e.g.

Γ |= (∀x)(∀y)(∃z)(x ◦ z ≈ y) ?

or Γ � (∀x)(∀y)(∃z)(x ◦ z ≈ y) ?
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Today

This tutorial will consist of two parts:

(I) Consequence in Logic and Algebra

(II) Substructural Logics and Residuated Lattices.
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Part I

Consequence in Logic and Algebra
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A Brief History of Consequence: Categorical Syllogisms

Categorical syllogisms, as described by Aristotle
in the Prior Analytics (c. 350 BC), consist of three
parts: the major premise, the minor premise, and
the conclusion.

For example:

Major premise: No homework is fun. (No M are P.)
Minor premise: Some reading is homework. (Some S are M.)

Conclusion: Some reading is not fun. (Some S are not P.)
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A Brief History of Consequence: Boolean Algebras

Boolean algebras originated in George Boole’s
An Investigation of the Laws of Thought (1865)
and consist of a set B with binary operations ∧,∨,
a unary operation �, and constants 0, 1.

Key examples include:

the two-element Boolean algebra (with x � = 1 − x)

({0, 1},min,max,� , 0, 1)

power set algebras, for a set A (with B� = A \ B)

(℘(A),∩,∪,� , ∅,A).
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A Brief History of Consequence: Formal Systems

Formal systems for logical consequence (the predicate calculus)
based on the notion of proof were developed by Frege, Hilbert,
Bernays, Russell, Gentzen, and others (1879-1935).

Γ � ϕ “There is a proof of ϕ from Γ.”
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A Brief History of Consequence: Semantics

A “truth-oriented” description of logical consequence
was given by Alfred Tarski (1936) based on models:
mathematical structures that provide interpretations
for non-logical primitives of a formal language.

Γ |= ϕ “If A is a model of Γ, then A is a model of ϕ.”
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A Brief History of Consequence: Completeness

The equivalence of the semantic (truth) and
syntactic (proof) approaches was established by
Kurt Gödel in his 1929 doctoral dissertation, i.e.

Γ � ϕ ⇔ Γ |= ϕ.
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Investigating Consequence

A more abstract framework for investigating consequence is
provided by Tarski’s notion of a consequence relation.

We consider here how consequence relations can be defined in
terms of proof systems and classes of algebras.

We give an account (following Lindenbaum-Tarski, Blok-Pigozzi,
Jónsson, etc.) of the equivalence of consequence relations.

As an example, we consider equivalent consequence relations for
the class of lattices and a simple application.
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Consequence Relations

A consequence relation over a non-empty set A is a relation
� ⊆ ℘(A)× A such that for all a, b ∈ A and X ,Y ⊆ A:

X � a if a ∈ X (reflexivity)

X � a implies X ∪ Y � a (monotonicity)

X � a and X ∪ {a} � b implies X � b (transitivity).

� is called finitary if also

X � a implies Y � a for some finite Y ⊆ X .

We write X � Y when X � a for all a ∈ Y .

Note that consequence relations over A are in 1-1 correspondence with
consequence operators (closure operators) on the poset (℘(A),⊆).
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Some Terminology

To talk about logics and classes of algebras, we need

a language L consisting of function symbols (or connectives)
such as ◦, −1, e, ∧, ∨, ¬, 0, 1 with specified finite arities

L-algebras consisting of a set A together with functions f A for
each function symbol f of L

the set FmL of L-formulas ϕ,ψ . . . built from a countably infinite
set of variables x , y . . . and the formula algebra FmL

the set EqL of L-equations, written ϕ ≈ ψ.
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A Proof System for Classical Logic

Let L be a language with connectives ∧,∨,→,¬, 0, 1 and define

Γ �
HCL

ϕ

when ϕ ∈ FmL is derivable from Γ ⊆ FmL using the (schematic) rules:

A1. ϕ → (ψ → ϕ) A9. ϕ ∧ ψ → ϕ
A2. (ϕ → (ψ → χ)) → ((ϕ → ψ) → (ϕ → χ)) A10. ϕ ∧ ψ → ψ
A3. ¬¬ϕ → ϕ A11. ϕ → ϕ ∨ ψ
A4. (ϕ → ψ) → ((ϕ → ¬ψ) → ¬ϕ) A12. ψ → ϕ ∨ ψ
A5. ϕ → (¬ϕ → ψ) A13. ¬1 → 0
A6. 1 → (ϕ → ϕ) A14. 0 → ¬1
A7. (ϕ → ψ) → ((ϕ → χ) → (ϕ → ψ ∧ χ)) A15. (ϕ → ϕ) → 1
A8. (ϕ → χ) → ((ψ → χ) → (ϕ ∨ ψ → χ))

ϕ ϕ → ψ

ψ
(MP)

Then �
HCL

is a finitary consequence relation over FmL.
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Proof Systems

A rule for a set A is a set of ordered pairs ({a1, . . . , an}, a) with
{a1, . . . , an, a} ⊆ A, and a proof system C is a set of rules for A.

A C-derivation of a ∈ A from X ⊆ A is a finite tree labelled with
members of A such that a labels the root and each node labelled b

is either in X

or has child nodes labelled b1, . . . , bn where ({b1, . . . , bn}, b)
is a member of a rule of C.

We write X �
C

a if there is a C-derivation of a from X .

Lemma
�

C
is a finitary consequence relation over A.
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Substitution-Invariance

L-substitutions for a language L can be defined as endomorphisms

σ : FmL → FmL

and extended to L-equations by

σ(ϕ ≈ ψ) = σ(ϕ) ≈ σ(ψ).

A consequence relation � over FmL or EqL satisfying

X � a =⇒ σ(X ) � σ(a) for all L-substitutions σ

is called substitution-invariant.
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Equational Consequence Relations

Given a class of L-algebras K, define for Σ ∪ {ϕ ≈ ψ} ⊆ EqL:

“whenever the equations in Σ hold in
Σ �K ϕ ≈ ψ ⇐⇒ some A ∈ K, also ϕ ≈ ψ holds in A”

For each A ∈ K and h : FmL → A

h(ϕ�) = h(ψ�) =⇒ h(ϕ) = h(ψ).
for all ϕ� ≈ ψ� ∈ Σ

Lemma
�K is a substitution-invariant consequence relation over EqL.

Moreover, if K is a variety (equational class), then �K is finitary.
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Boolean Algebras

Recall that a Boolean algebra (in the same language as HCL)
is an algebra A = (A,∧,∨,→,¬, 0, 1) such that

(A,∧,∨, 0, 1) is a bounded distributive lattice
a ∧ ¬a = 0 and a ∨ ¬a = 1 for all a ∈ A

a → b = ¬a ∨ b for all a, b ∈ A.

Let BA be the (equational) class of all Boolean algebras.
Then �BA is a finitary substitution-invariant consequence relation.
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Equivalence of �
HCL

and �BA

We translate between formulas and equations using “transformers”

τ(ϕ) = {ϕ ≈ 1} and ρ(ϕ ≈ ψ) = {ϕ → ψ,ψ → ϕ}

and obtain

Γ �
HCL

ϕ ⇐⇒ τ(Γ) �BA τ(ϕ)

Σ �BA ϕ ≈ ψ ⇐⇒ ρ(Σ) �
HCL

ρ(ϕ ≈ ψ)

ϕ �
HCL

ρ(τ(ϕ)) & ρ(τ(ϕ)) �
HCL

ϕ

ϕ ≈ ψ �BA τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �BA ϕ ≈ ψ.

We say that BA is an “equivalent algebraic semantics” for �
HCL

.
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Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Algebraizable Logics

A substitution-invariant consequence relation �
L

over FmL is called
algebraizable with respect to a class of L-algebras K if there are maps

τ : FmL → ℘(EqL) and ρ : EqL → ℘(FmL)

such that

Γ �
L
ϕ ⇐⇒ τ(Γ) �K τ(ϕ)

Σ �K ϕ ≈ ψ ⇐⇒ ρ(Σ) �
L
ρ(ϕ ≈ ψ)

ϕ �
L
ρ(τ(ϕ)) & ρ(τ(ϕ)) �

L
ϕ

ϕ ≈ ψ �K τ(ρ(ϕ ≈ ψ)) & τ(ρ(ϕ ≈ ψ)) �K ϕ ≈ ψ.

K is called an equivalent algebraic semantics for �
L
.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 20 / 65



Examples

Logic Equivalent algebraic semantics

Classical logic Boolean algebras

Intuitionistic logic Heyting algebras

Modal logics Boolean algebras with operators

Łukasiewicz logic MV-algebras
...

...

BCI logic not algebraizable!
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A More Abstract Perspective

Let �1 ,�2 be consequence relations over the sets A1,A2, respectively.

We say that �1 and �2 are similar if there exist maps

τ : A1 → ℘(A2) and ρ : A2 → ℘(A1)

such that for all X ∪ {a} ⊆ A1 and Y ∪ {b} ⊆ A2:

X �1 a ⇐⇒ τ(X ) �2 τ(a)

Y �2 b ⇐⇒ ρ(Y ) �1 ρ(b)

a �1 ρ(τ(a)) & ρ(τ(a)) �1 a

b �2 τ(ρ(b)) & τ(ρ(b)) �2 b.
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Action-Invariance

A non-empty set A is called an M-set if there exists a monoid

M = (M, ◦, 1)

and an operation
� : M × A → A

such that for all σ1,σ2 ∈ M and a ∈ A:

(σ1 ◦ σ2) � a = σ1 � (σ2 � a).

A consequence relation � over A is action-invariant if for all σ ∈ M:

X � a =⇒ σ � X � σ � a.
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Equivalence
Let �1 and �2 be action-invariant consequence relations over
M-sets A1 and A2, respectively.

We say that �1 and �2 are equivalent if

�1 and �2 are similar with transformers τ and ρ

τ can be extended to an action-invariant map

τ∗ : ℘(A1) → ℘(A2)

i.e., for every σ ∈ M and X ⊆ A1

σ � τ(X ) = τ(σ � X ).

ρ can be extended to an action-invariant map

ρ∗ : ℘(A2) → ℘(A2).
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Lattices

Recall that a lattice is a poset (L,≤) containing for all x , y ∈ L

x ∧ y : the greatest lower bound (meet) of x and y

x ∨ y : the least upper bound (join) of x and y

or, alternatively, an algebra (L,∧,∨) satisfying

x ∨ (y ∨ z) ≈ (x ∨ y) ∨ z x ∧ (y ∧ z) ≈ (x ∧ y) ∧ z

x ∧ y ≈ y ∧ x x ∨ y ≈ y ∨ x

x ∧ (x ∨ y) ≈ x x ∨ (x ∧ y) ≈ x

where x ≤ y stands for x ∧ y ≈ x .

The class LAT of all lattices (as algebras) has a corresponding
substitution-invariant finitary consequence relation �LAT .
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A Proof System Lat for Lattices

Axioms Cut rule

ϕ ≤ ϕ
(ID)

ϕ ≤ χ χ ≤ ψ

ϕ ≤ ψ
(CUT)

Left operational rules Right operational rules

ϕ1 ≤ ψ

ϕ1 ∧ ϕ2 ≤ ψ
(∧⇒)1

ψ ≤ ϕ1

ψ ≤ ϕ1 ∨ ϕ2
(⇒∨)1

ϕ2 ≤ ψ

ϕ1 ∧ ϕ2 ≤ ψ
(∧⇒)2

ψ ≤ ϕ2

ψ ≤ ϕ1 ∨ ϕ2
(⇒∨)2

ϕ1 ≤ ψ ϕ2 ≤ ψ

ϕ1 ∨ ϕ2 ≤ ψ
(∨⇒)

ψ ≤ ϕ1 ψ ≤ ϕ2

ψ ≤ ϕ1 ∧ ϕ2
(⇒∧)
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Derivations

Lat-derivations are finite trees labelled with inequations; e.g.

x ≤ x
(ID)

x ≤ x
(ID)

x ≤ x ∨ y
(⇒∨)1

x ≤ x ∧ (x ∨ y)
(⇒∧)
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Equivalence of �
Lat

and �LAT

Theorem
�

Lat
and �LAT are equivalent with transformers defined by

τ(ϕ ≈ ψ) = {ϕ ≤ ψ,ψ ≤ ϕ}

ρ(ϕ ≤ ψ) = {ϕ ∧ ψ ≈ ϕ}.
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Proof Sketch

It suffices to show that for any set of inequations Σ ∪ {ϕ ≤ ψ}:

Σ �
Lat

ϕ ≤ ψ ⇐⇒ Σ �LAT ϕ ≤ ψ.

(⇒) By induction on the height of a derivation in Lat.
(⇐) We define a binary relation Θ on the lattice formulas Fm by

(ϕ,ψ) ∈ Θ ⇔ (Σ �
Lat

ϕ ≤ ψ and Σ �
Lat

ψ ≤ ϕ).

Θ is reflexive by (ID), symmetric by definition, and transitive by (CUT),
i.e., an equivalence relation. In fact, Θ is a congruence on Fm. E.g., if
(ϕ1,ψ1) ∈ Θ and (ϕ2,ψ2) ∈ Θ, then (ϕ1 ∧ ϕ2,ψ1 ∧ ψ2) ∈ Θ using

...
ϕ1 ≤ ψ1

ϕ1 ∧ ϕ2 ≤ ψ1
(∧⇒)1

...
ϕ2 ≤ ψ2

ϕ1 ∧ ϕ2 ≤ ψ2
(∧⇒)2

ϕ1 ∧ ϕ2 ≤ ψ1 ∧ ψ2
(⇒∧)

...
ψ1 ≤ ϕ1

ψ1 ∧ ψ2 ≤ ϕ1
(∧⇒)1

...
ψ2 ≤ ϕ2

ψ1 ∧ ψ2 ≤ ϕ2
(∧⇒)2

ψ1 ∧ ψ2 ≤ ϕ1 ∧ ϕ2
(⇒∧)
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Proof Sketch

Moreover, Fm/Θ is a lattice. E.g., commutativity of ∧Fm/Θ follows from

ψ ≤ ψ
(ID)

ϕ ∧ ψ ≤ ψ
(∧⇒)2

ϕ ≤ ϕ
(ID)

ϕ ∧ ψ ≤ ϕ
(∧⇒)1

ϕ ∧ ψ ≤ ψ ∧ ϕ
(⇒∧)

Finally, observe that

ϕ/Θ ≤Fm/Θ ψ/Θ ⇔ ϕ/Θ ∧Fm/Θ ψ/Θ = (ϕ ∧ ψ)/Θ = ϕ/Θ

⇔ Σ �
Lat

ϕ ∧ ψ ≤ ϕ and Σ �
Lat

ϕ ≤ ϕ ∧ ψ

⇔ Σ �
Lat

ϕ ≤ ψ.

So if Σ ��
Lat

ϕ ≤ ψ, then Σ ��LAT ϕ ≤ ψ.
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Cut-Elimination

Now let Lat
◦ be Lat without (CUT), and let d �

Lat◦ ϕ ≤ ψ denote that d

is a derivation of ϕ ≤ ψ in Lat
◦.

Theorem
If �

Lat
ϕ ≤ ψ, then �

Lat◦ ϕ ≤ ψ.

Proof sketch. Applications of (CUT) can be eliminated from a
Lat-derivation of ϕ ≤ ψ by pushing them upwards until they vanish. . .

Induction hypothesis. We show that

(d1 �
Lat◦ ϕ ≤ χ and d2 �

Lat◦ χ ≤ ψ) =⇒ �
Lat◦ ϕ ≤ ψ

by induction on the sum of the heights of the derivations d1 and d2.

Base case. If d1 ends with (ID), then χ = ϕ and d2 is the required
Lat

◦-derivation of ϕ ≤ ψ (similarly, if d2 ends with (ID)).
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Cut-Elimination

Inductive step. There are two cases:

(1) The “cut-formula” χ is decomposed in both premises, e.g.

...
ϕ ≤ χ1

...
ϕ ≤ χ2

ϕ ≤ χ1 ∧ χ2
(⇒∧)

...
χ1 ≤ ψ

χ1 ∧ χ2 ≤ ψ
(∧⇒)1

ϕ ≤ ψ
(CUT)

=⇒
...

ϕ ≤ χ1

...
χ1 ≤ ψ

ϕ ≤ ψ
(CUT)

(2) The “cut-formula” χ is not decomposed in one premise, e.g.

...
ϕ1 ≤ χ

...
ϕ2 ≤ χ

ϕ1 ∨ ϕ2 ≤ χ
(∨⇒)

...
χ ≤ ψ

ϕ1 ∨ ϕ2 ≤ ψ
(CUT)

=⇒

...
ϕ1 ≤ χ

...
χ ≤ ψ

ϕ1 ≤ ψ
(CUT)

...
ϕ2 ≤ χ

...
χ ≤ ψ

ϕ2 ≤ ψ
(CUT)

ϕ1 ∨ ϕ2 ≤ ψ
(∨⇒)
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Corollaries of Cut-Elimination

Corollary
The equational theory of lattices is decidable.

We also obtain results for free lattices, e.g., Whitman’s condition

�LAT ϕ1 ∧ ϕ2 ≤ ψ1 ∨ ψ2 =⇒ �LAT ϕ1 ≤ ψ1 ∨ ψ2, �LAT ϕ2 ≤ ψ1 ∨ ψ2

�LAT ϕ1 ∧ ϕ2 ≤ ψ1, or �LAT ϕ1 ∧ ϕ2 ≤ ψ2.
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Part II

Substructural Logics & Residuated Lattices
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An Interesting Case Study

We consider. . .

on the logical side, substructural logics,

on the algebraic side, residuated lattices,

and the mutually beneficial relationship between the two.
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Substructural Logics

Substructural logics are logics that in some sense – they defy
precise definition – live “beneath the surface” of classical logic.

Motivated by considerations from linguistics, algebra, set theory,
philosophy, and computer science, they all reject at least one
classically valid “structural rule”.

(The expression “substructural logic" was proposed by Kosta Došen
and Peter Schroeder-Heister at a conference in Tübingen in 1990.)
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Sequents

Let us begin with a proof-theoretic presentation of classical logic in
a language with connectives ∧, ∨, →, 1, and 0, defining ¬ϕ = ϕ → 0.

A sequent will be an ordered pair of sequences of formulas, written

ϕ1, . . . ,ϕn ⇒ ψ1, . . . ,ψm

and possibly understood as

“if all of ϕ1, . . . ,ϕn are true, then one of ψ1, . . . ,ψm is true”.

We call such a sequent single-conclusion when m ≤ 1.
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A Sequent Calculus GCL

Initial sequents Cut rule

ϕ ⇒ ϕ (ID)
Γ2 ⇒ ϕ,∆2 Γ1,ϕ, Γ3 ⇒ ∆1

Γ1, Γ2, Γ3 ⇒ ∆1,∆2
(CUT)

Left structural rules Right structural rules

Γ1,ϕ,ψ, Γ2 ⇒ ∆

Γ1,ψ,ϕ, Γ2 ⇒ ∆
(EL)

Γ ⇒ ∆1,ϕ,ψ,∆2

Γ ⇒ ∆1,ψ,ϕ,∆2
(ER)

Γ1, Γ2 ⇒ ∆

Γ1,ϕ, Γ2 ⇒ ∆
(WL)

Γ ⇒ ∆1,∆2

Γ ⇒ ∆1,ϕ,∆2
(WR)

Γ1,ϕ,ϕ, Γ2 ⇒ ∆

Γ1,ϕ, Γ2 ⇒ ∆
(CL)

Γ ⇒ ∆1,ϕ,ϕ,∆2

Γ ⇒ ∆1,ϕ,∆2
(CR)
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A Sequent Calculus GCL

Left operational rules Right operational rules

Γ1, Γ2 ⇒ ∆

Γ1, 1, Γ2 ⇒ ∆
(1 ⇒)

0 ⇒ (0 ⇒) ⇒ 1
(⇒ 1)

Γ ⇒ ∆1,∆2

Γ ⇒ ∆1, 0,∆2
(⇒ 0)

Γ1,ϕi , Γ2 ⇒ ∆

Γ1,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆
(∧⇒)i i = 1, 2

Γ ⇒ ∆1,ϕ1,∆2 Γ ⇒ ∆1,ϕ2,∆2

Γ ⇒ ∆1,ϕ1 ∧ ϕ2,∆2
(⇒∧)

Γ1,ϕ1, Γ2 ⇒ ∆ Γ1,ϕ2, Γ2 ⇒ ∆

Γ1,ϕ1 ∨ ϕ2, Γ2 ⇒ ∆
(∨⇒)

Γ ⇒ ∆1,ϕi ,∆2

Γ ⇒ ∆1,ϕ1 ∨ ϕ2,∆2
(⇒∨)i i = 1, 2

Γ2 ⇒ ϕ,∆2 Γ1,ψ, Γ3 ⇒ ∆1

Γ1, Γ2,ϕ → ψ, Γ3 ⇒ ∆1,∆2
(→⇒)

ϕ, Γ ⇒ ψ,∆

Γ ⇒ ϕ → ψ,∆
(⇒→)
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Peirce’s Law

ϕ ⇒ ϕ (ID)

ϕ ⇒ ϕ (ID)

ϕ ⇒ ψ,ϕ
(WR)

⇒ ϕ → ψ,ϕ
(⇒→)

(ϕ → ψ) → ϕ ⇒ ϕ,ϕ
(→⇒)

(ϕ → ψ) → ϕ ⇒ ϕ
(CR)

⇒ ((ϕ → ψ) → ϕ) → ϕ
(⇒→)
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A First Substructural Logic?

A sequent calculus GIL for intuitionistic logic is obtained by
restricting the rules of GCL to single-conclusion sequents.

For example, we obtain implication rules

Γ2 ⇒ ϕ Γ1,ψ, Γ3 ⇒ ∆
Γ1, Γ2,ϕ → ψ, Γ3 ⇒ ∆

(→⇒)
ϕ, Γ ⇒ ψ

Γ ⇒ ϕ → ψ
(⇒→)

and lose the contraction right rule (CR).
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Two Conjunctions?

If “I have e1 and I have e1”, how many Euros do I have? e1 or e2?

The rules for ∧ in GCL correspond to the first “additive” meaning of
conjunction, but we could also define a “multiplicative” conjunction by

Γ1,ϕ1,ϕ2, Γ2 ⇒ ∆
Γ1,ϕ1 · ϕ2, Γ2 ⇒ ∆

(· ⇒)
Γ1 ⇒ ϕ1,∆1 Γ2 ⇒ ϕ2,∆2

Γ1, Γ2 ⇒ ϕ1 · ϕ2,∆1,∆2
(⇒ ·)

These are inter-derivable in LJ and LK, e.g.

Γ1,ϕ1,ϕ2, Γ2 ⇒ ∆
Γ1,ϕ1,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆

(∧⇒)2

Γ1,ϕ1 ∧ ϕ2,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆
(∧⇒)1

Γ1,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆
(CL)

Γ1,ϕi , Γ2 ⇒ ∆
Γ1,ϕ1,ϕ2, Γ2 ⇒ ∆

(WL)

Γ1,ϕ1 · ϕ2, Γ2 ⇒ ∆
(· ⇒)

but not if we drop structural rules. . .
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(∧⇒)2

Γ1,ϕ1 ∧ ϕ2,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆
(∧⇒)1

Γ1,ϕ1 ∧ ϕ2, Γ2 ⇒ ∆
(CL)

Γ1,ϕi , Γ2 ⇒ ∆
Γ1,ϕ1,ϕ2, Γ2 ⇒ ∆

(WL)

Γ1,ϕ1 · ϕ2, Γ2 ⇒ ∆
(· ⇒)

but not if we drop structural rules. . .
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Dropping Weakening

Some substructural logics may be obtained by dropping structural
rules from GCL and GIL and adding rules for splitting connectives.

E.g., relevant logics denying “paradoxes of strict implication" like

ϕ → (ψ ∨ ¬ψ) and (ϕ ∧ ¬ϕ) → ψ

are obtained by removing the weakening rules and adding rules for ·.

The most famous relevant logic R (which admits distributivity) requires
a more complicated sequent framework, however.
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Dropping Contraction

In the 1920’s, Jan Łukasiewicz introduced logics with n ≥ 3 truth
values and an infinite-valued logic with truth values in [0, 1], where
negation and implication are interpreted by the truth functions

¬x = 1 − x and x → y = min(1, 1 − x + y).

Contraction fails, since the following formula is not valid (constantly 1):

(ϕ → (ϕ → ψ)) → (ϕ → ψ).

These and related contraction-free logics have been used to model
vagueness and to (try to) avoid set-theoretic paradoxes.

Sequent calculi do not always suffice for these logics, but they can be
presented as substructural logics in a hypersequent framework.
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Dropping Weakening and Contraction

Other “resource-based” substructural logics are obtained by dropping
both weakening and contraction rules.

Girard’s linear logic also adds rules for the special connectives
! “of course” and ? “why not” that recover structural properties, e.g.

ϕ, Γ ⇒ ∆
!ϕ, Γ ⇒ ∆

(!⇒)
!Γ ⇒ ϕ, ?∆
!Γ ⇒!ϕ, ?∆

(⇒!)

Γ ⇒ ∆
!ϕ, Γ ⇒ ∆

(!WL)
!ϕ, !ϕ, Γ ⇒ ∆
!ϕ, Γ ⇒ ∆

(!CL)
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Dropping all Structural Rules

Lambek’s calculus for grammatical types has “division operators” \
and /, where, e.g., the intransitive verb “works” has type n\s and the
adjective “poor” has type n/n (with n = noun phrase and s = sentence).

The rules for \ and / are obtained as alternative rules for implication:

Γ2 ⇒ ϕ Γ1,ψ, Γ3 ⇒ ∆

Γ1, Γ2,ϕ\ψ, Γ3 ⇒ ∆
(\ ⇒)

ϕ, Γ ⇒ ψ

Γ ⇒ ϕ\ψ
(⇒ \)

Γ2 ⇒ ϕ Γ1,ψ, Γ3 ⇒ ∆

Γ1,ψ/ϕ, Γ2, Γ3 ⇒ ∆
(/ ⇒)

Γ,ϕ ⇒ ψ

Γ ⇒ ψ/ϕ
(⇒ /)

The Full Lambek Calculus FL consists of GIL without any structural
rules but extended with rules for ·, \, and /.
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Extensions of FL

Typically, FL extended appropriately with exchange (e), weakening (w),
and contraction (c) rules is denoted by FLS for S ⊆ {e,w , c}.

However, we are not limited to these structural rules; consider, e.g.

Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

Γ1, Γ2 ⇒ ∆1,∆2
(MIX)

Γ, Γ ⇒ ∆,∆

Γ ⇒ ∆
(GC)

We can also explore substructural logics in richer frameworks;
e.g., hypersequents, display logic, nested sequents. . .
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From Consequence to Algebra?

Each sequent calculus C gives rise to a consequence relation �
C

over the set of all sequents of the language.

In particular, for a set of sequents Θ ∪ {S}:

Θ �
FL

S ⇐⇒ S is derivable from Θ in FL.

But what is a suitable algebraic semantics for FL?
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Residuated Lattices

A residuated lattice is an algebra

A = (A,∧,∨, ·, \, /, 1)

such that

(A,∧,∨) is a lattice

(A, ·, 1) is a monoid

and for all x , y , z ∈ A

x ≤ z/y ⇔ x · y ≤ z ⇔ y ≤ x\z.

An FL-algebra is a residuated lattice with an extra nullary operation 0.
We can also regard a residuated lattice as an FL-algebra with 0 = 1.
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The Commutative Setting

Commutative FL-algebras satisfy the equation

x · y ≈ y · x

and therefore also
x\y ≈ y/x .

So in this case, we just write → for either \ or /.

Consider, for example:

(Z,min,max,+,−, 0).
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Examples from Rings

Let R be a unital ring and I(R) the lattice of two-sided ideals of R.

Consider the operations for I, J ∈ I(R):

I · J = {
�

n

k=1 akbk | ak ∈ I; bk ∈ J; n ≥ 1}

I\J = {x ∈ R | Ix ⊆ J}

J/I = {x ∈ R | xI ⊆ J}.

Then we obtain an FL-algebra:

I(R) = (I(R),∩,∨, ·, \, /,R, {0}).
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An Equational Axiomatization

The class FL of FL-algebras is a variety defined by the equations for
lattices and monoids together with

x · (y ∨ z) ≈ (x · y) ∨ (x · z) (y ∨ z) · x ≈ (y · x) ∨ (z · x)

x\y ≤ x\(y ∨ z) y/x ≤ (y ∨ z)/x

x · (x\y) ≤ y ≤ x\(x · y) (y/x) · x ≤ y ≤ (y · x)/x .
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Significant Classes
Up to term-equivalence. . .

Heyting algebras are commutative FL-algebras satisfying

x · y ≈ x ∧ y and 0 ≤ x .

Boolean algebras are Heyting algebras satisfying (¬x = x → 0)

¬¬x ≈ x .

Lattice-ordered groups are residuated lattices satisfying

x · (1/x) ≈ 1.

MV-algebras are commutative FL-algebras satisfying

x ∨ y ≈ (x → y) → y and 0 ≤ x .
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Equivalence of �
FL

and �FL

Theorem
�

FL
and �FL are equivalent with transformers defined by

τ(ϕ ≈ ψ) = {ϕ ⇒ ψ,ψ ⇒ ϕ}

ρ(ϕ1, . . . ,ϕn ⇒ ψ) = {ϕ1 · . . . · ϕn ≤ ψ}

ρ(ϕ1, . . . ,ϕn ⇒ ) = {ϕ1 · . . . · ϕn ≤ 0}

where ϕ1 · . . . · ϕn is 1 when n = 0.
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Decidability

For a given class of FL-algebras K, we might ask. . .

is the equational theory of K decidable?

(�K ϕ ≈ ψ for a given L-equation ϕ ≈ ψ?)

is the quasiequational theory of K decidable?

(Σ �K ϕ ≈ ψ for a given finite set of L-equations Σ ∪ {ϕ ≈ ψ}?)

We can tackle these problems using tools from both logic and algebra.
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Cut Elimination

Decidability of the equational theory of FL follows immediately
(as in the case of lattices) from a proof of cut elimination for FL.

Decidability follows similarly – but not always immediately – for
other varieties of FL-algebras.

However, it can be difficult to find a suitable calculus or perhaps
cut-elimination does not help with decidability. . . Also, this method
does not give decidability of the quasiequational theory. . .
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The (Strong) Finite Model Property

A class K of L-algebras has the finite model property (FMP) if

��K ϕ ≈ ψ =⇒ ��
A
ϕ ≈ ψ for some finite A ∈ K

and the strong finite model property (SFMP) if (for Σ finite)

Σ ��K ϕ ≈ ψ =⇒ Σ ��
A
ϕ ≈ ψ for some finite A ∈ K.

Lemma
If K is finitely axiomatizable, then

FMP =⇒ the equational theory of K is decidable

SFMP =⇒ the quasiequational theory of K is decidable.
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Finite Embeddability Property
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Establishing the FEP

Theorem (McKinsey and Tarski)
The variety HA of Heyting algebras has the FEP.

Proof.
Let B be a finite partial subalgebra of some A ∈ HA. Then the lattice
D generated by B ∪ {0, 1} is a finitely generated distributive lattice and
hence finite. Since the ∧ in any finite distributive lattice is residuated, D

can be viewed as a Heyting algebra. Moreover, the partially defined
residuum operation of B coincides (where defined) with the residuum
of the meet of D, so B can be embedded into this algebra.

More complicated constructions have been introduced by Blok and
Van Alten that establish the FEP for many classes of FL-algebras.
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The Amalgamation Property

A class of L-algebras K has the amalgamation property (AP) if for all
A,B,C ∈ K and embeddings i and j of A into B and C, there exist
D ∈ K and embeddings h, k of B and C into D such that h ◦ i = k ◦ j .

C ��
k

��
A
��

j

��

��

i
��

D

B
��

h

��
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The Deductive Interpolation Property

K has the deductive interpolation property (DIP) if whenever

Σ �K ϕ ≈ ψ

there exists a set of equations ∆ satisfying

Var(∆) ⊆ Var(Σ)∩Var(ϕ ≈ ψ) (Var(X ) denotes the variables of X )

Σ �K ∆

∆ �K ϕ ≈ ψ.

Theorem
A variety of commutative FL-algebras has the AP iff it has the DIP.
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Establishing the AP

Theorem
The variety HA of Heyting algebras has the AP.

Proof.
It suffices to show that HA has the DIP using the calculus GIL.
Namely, we can prove that whenever

�
GIL

Γ1, Γ2 ⇒ ϕ

there exists a formula ψ satisfying
Var(ψ) ⊆ Var(Γ1) ∩ Var(Γ2,ϕ)

�
GIL

Γ1 ⇒ ψ

�
GIL

Γ2,ψ ⇒ ϕ

by induction on the height of a cut-free derivation of Γ1, Γ2 ⇒ ϕ.
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Final Remarks

Relationships between logic and algebra, developed via
consequence relations, can be fruitful on both sides.

A current hot topic is the question of when “good” proof systems
for logics / classes of algebras exist, and what role duality and
relational semantics play in all of this.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 64 / 65



Final Remarks

Relationships between logic and algebra, developed via
consequence relations, can be fruitful on both sides.

A current hot topic is the question of when “good” proof systems
for logics / classes of algebras exist, and what role duality and
relational semantics play in all of this.

George Metcalfe (University of Bern) Ordered Algebras and Logic May 2013 64 / 65



Further Reading
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