Uncomputability and Logic

Godel's Incompleteness Theorems

Zoé Christoff, ILLC

SGSLPS Annual Meeting
April 5, 2012

1/67

Plan

Historical preliminaries

First Incompleteness Theorem
Statement
Terminology
Proof
Strategy
First-order logic and computability toolbox
Arithmetization of syntax
Representability of recursive functions
Diagonalization and final steps
Second Incompleteness Theorem
Related results

Conclusion

2

67

Historical preliminaries

Mathematical context

Recent discoveries:

» Cantor’s theorem: there are bigger infinities than others.
(1891)

> Russell’'s Paradox (1902)

3/67

Historical preliminaries

Russell's Paradox

If any collection of objects having a certain property is to be
considered as a set, then, we can define the set:

{x[x¢&x}

Does this set belong to itself? If yes, then it doesn't. If not, then
it does.

Set theory (without any further assumption about what a set
cannot be) is inconsistent.

4 /67

Historical preliminaries

The Liar Paradox

This sentence is false.

5/67

Historical preliminaries

Hilbert's Program

After the crisis due to Russell’s paradox, David Hilbert required a
PROOF that mathematics is consistent.

He also wanted to keep the possibilities of "wild” infinity as part of
mathematics : " No one shall expel us from the paradise that
Cantor has created for us.”

Ideally, what is wanted is a limited formal system which could
generate every mathematical truth and no falsity (even the ones
about infinities) and prove them all (and nothing else), using a
limited number of rules and axioms.

Using only finite method, a proof of consistency of infinite
mathematics !

6 /67

Historical preliminaries

Kurt Godel (1906-1978)

» 1929: Godel's doctoral dissertation, written when he was 23,
established the completeness theorem for the first-order logic.

» 1931: "Uber formal unentscheidbare Sitze der Principia
Mathematica und verwandter Systeme” (On formally
undecidable propositions of Principia Mathematica and related
systems): establishes both incompleteness theorems.

7/67

First Incompleteness Theorem

Statement
Terminology

First Incompleteness Theorem

» There is no complete consistent axiomatizable theory of
arithmetic.

Godel’s incompleteness theorems tell us about the limits of
axiomatized formal theories of arithmetic.

8/67

First Incompleteness Theorem
Statement

Terminology

Theory

A : set of sentences of our language.

» A theorem D of A is a sentence proved by A, a sentence
deducible from A. We note A+ D and if A is empty (logical
theorem), - D.

» A theory T is a set of sentences (in a given formal language)
which is closed under deduction (contains all the sentences of
its language that are provable from it). The theorems of a
theory T are just the sentencesin T,and THFDand De T
are two ways of writing the same thing.

» The set of all theorems of a system is a theory.

9/67

First Incompleteness Theorem
Statement

Terminology

Axiomatizability

» If there is a recursive set ¥ of sentences such that T consists
of all and only the sentences provable from ¥, we say T is
axiomatizable.

First Incompleteness Theorem
Statement

Terminology

Consistency

> A set of sentences A is consistent iff no contradiction can be
proven from it.

» A theory T is consistent iff it contains no contradiction.

First Incompleteness Theorem
Statement

Terminology

Not this completeness notion...

Completeness in regard to its semantics, converse of soundness:

» For any formula ¢ in the language and for any set A of
formulas of the language:

if AE ¢, then A ¢

The first proof of completeness for first-order logic was already
given by Godel in 1929 (Godel's Completeness Theorem).

12 /67

First Incompleteness Theorem
Statement

Terminology

but this one: negation-completeness

» A set of sentences A is (negation-)complete iff for every
sentence B of its language:

AFBorAF-B

» A theory T is (negation-)complete iff for every sentence B of
its language:

BeTor—-BeT

13 /67

Strategy
First-order logi omputability toolbox
Arithmetizatio

Strategy of proof

Assume that T is any consistent axiomatizable theory of
artithmetic and show that it is not negation-complete, that is, that
there is at least one sentence such that the theory cannot prove it
nor disprove it (prove its negation).

14 /67

Strategy
First-order logic and computability toolbox

Ari

Y e functions
alization ar al steps

Strategy of proof

1. Show that our formal language can "talk about” its own
syntax (sentences and proofs), through coding. Bring together
logic and computability (recursive functions) in this first
direction.

2. Show that we can "talk about” recursive functions using
formulas IN our language of arithmetic. (definability and
representability of recursive functions in the language).

3. Combining both preceding results: show that a formal system
can "talk about” itself: we can talk about (sentences and
proofs of) a formal system of arithmetic within the formal
system of arithmetic itself. We can bring the metalanguage
into the language of arithmetic.

15 /67

Strategy

First-order logic and computability toolbox
Ari a f
Y e functions
alization ar al steps

Strategy of proof

4. Assuming we have a consistent theory of arithmetic, show
that it cannot be defined by any formula of the language. (If
it could, then we would have a sentence G of the language of
arithmetic such that it is provable that: G is true if and only if
G is not a theorem and the theory would be inconsistent.)

5. Using the previously established results (if an axiomatizable
theory of arithmetic is complete, then it is recursive and
therefore definable and if a theory of arithmetic is consistent,
then it is not definable), deduce the first incompleteness
theorem.

16 /67

Strategy
First-order logic and computability toolbox
Arithmetization o

FOL: Symbols

Logical symbols:
> variables symbols: x, vy, z, ...
» connective symbols: —, &, V, —, <

» quantifiers: V, 3

v

identity predicate symbol: =

Non-logical symbols (language):
» constants (individual symbols) : a, b, c, ...
» predicates (relation symbols): P, Q, R, ...
» function symbols: f, g, h, ...

Strategy

First-order logic and computability toolbox
Arithmetization o

FOL: Interpretation

An interpretation M for a language L consists of two components:

» domain |M|: the nonempty set of things M interprets the
language to be talking about.
» denotation for every non-logical symbol:
» constant symbol: individual in |M]|.
» n-place (nonlogical) predicate: n-place relation (set of
n-tuples) on |M].

» n-place function symbol f: an n-argument function from |M|
to [M]|.

18 /67

Strategy

e functions

The language Lx and its standard interpretation Nx

» constant symbol: 0
denotes the number 0.

» 2-place predicate symbol: <
denotes the set of pairs of elements of IN such that the first is
strictly less than the second.

» function symbols:

» one-place function symbol: s
denotes the successor function (takes each number to the next
larger one).

» two-places function symbols: +, -
denote the usual addition and multiplication functions.

Abbreviation rule: we abbreviate by n the composition of n times s
on 0: s(s(....0). So the numeral n denotes the number n.

19/67

Strategy
First-order logic and computability toolbox
Arithmetization of

Representability o e functions
Diagonalization an

Syntax: inductive definition of terms of Lx

> atomic:
> variables: x, y, z, ...
» constants: n (for any n € IN)
> complex:
» any expression f(ty, ..., t,) where f is any n-place function
applied to n terms

So any term can be built up from atomic terms in a sequence of
finitely many steps (formation sequence) by applying function
symbols to simpler terms. (And everything that can be built up in
this way is a term.)

20 /67

Strategy

Syntax: inductive definition of (well-formed) formulas of Lx

> atomic:
for t; and tp any terms of our language:
> L =D
> < b
» complex:
for ¢ and ¢ any (well-formed) formulas of our language:

> 20, & tp, OV Y, ¢ =P, ¢ > 1, Ix, V.

So any formula can be built up from atomic formulas in a sequence
of finitely many steps (formation sequence) by applying connectors
and quantifiers to simpler formulas. (And everything that can be
built up in this way is a formula.)

21/67

First-order logic and computability toolbox
Arithmetizati f

Semantics: definition of (arithmetical) truth

» Nx E t; = tp iff t; and t» denote the same number.

» Nx E t; < tp iff the number denoted by t; is strictly smaller
than the one denoted by t,.

> Nx E ¢ iff NxE ¢

> Nx E ¢& iff Nx E ¢ and Nx E o)

> Nx k¢ Vapiff Nxk= ¢ or Nx

> NxE ¢ — ¢ iff N« ¢ or Nx E

> NxE ¢ <1 iff NxE ¢ — 1) and Nx Eop — ¢
» Nx k= Ix¢ iff for some n € IN, Nx = ¢(n)

> Nx = Vx¢ iff for all n € IN, Nx = ¢(n)

22 /67

Strategy
First-order logic and computability toolbox
Arithmetization o

Logical vs meta-logical notions

» Logical: negation, conjunction, quantification, ...

» Meta-logical: consequence, satisfiability, validity, proof ...
There are symbols for the logical notions in our formal language Lx
(the object language).

Words like " consequence” or " proof’ only appear in the

mathematical English in which we talk about our formal language
(metalanguage).

23 /67

Strategy
First-order logic and computability toolbox
Ar tization of

ntability of r unctions
lization and S

Examples of meta-logical (syntactic) notions

For D any sentence of the language and A any set of sentences of
the language:

» A proof/derivation of D from a set A is a sequence of wff of
the language such that the last formula is D and for each
formula in the sequence, either it is a formula € A or it is
obtained from the preceding formulas in the sequence by the
application of some of the given deduction rules of the system.

» D is provable from A iff there is a proof of D from A.

» D is demonstrable iff there is a proof of D from ().

24 /67

Effective computability

A function is effectively computable iff there is a finite list of
definite explicit rules (instructions), following which one could in
principle compute its value for any given argument.
Examples: the basic functions:
» The zero function z (assigns value 0 to any argument)
» The successor function s (assigns the next bigger number to
any argument)

> The identities functions: id/ (projection functions):
d (X1, ooy Xiy oy Xn) = X

25 /67

Strategy

First-order logic and computability toolbox
Arithmetization of

Effectively computable functions building operations

Composition: For a function f of m arguments and a function g
of n arguments: h = Cnl[f, g1, ..., gm|:

h(x1, .oy Xn) = F(g1(X15 -y Xn), oer 8m(X1,5 -y Xn))

Examples: Constant functions : for each n, the function const, can
be obtained from the basic functions by finitely many (namely n)
applications of the successor function s on 0.

26 /67

Strategy
First-order logic and computability toolbox
Ar tization of

ntability of r unctions
lization and S

Effectively computable functions building operations

Primitive recursion: a function h is said to be definable by
(primitive) recursion from the functions f and g, h = Pr[f, g],
when both these equations hold:

h(x,0) = f(x)
h(x,s(y)) = g(x,y, h(x,y))
Functions obtainable from the basic functions by composition and

primitive recursion are called primitive recursive. All such
functions are effectively computable.

27 /67

Strategy
First-order logic and computability toolbox
Ar tization of

ntability of r unctions
lization and S

Arithmetic operations as primitive recursive functions

Addition is repeated succession:
> Informally:
x+0=x, x+s(y)=s(x+y)
We use the second equation to reduce the problem of
computing x+y to that of computing x+z for smaller and

smaller z, until we arrive at z=0, when the first equation tells
us directly how to compute x+-0.

» Formally: sum = Prl[id}, Cnl[s, id3]]:

sum(x,0) = id}(x)
sum(x,s(y)) = s(sum(x,y)) = (Cnls, id33](x,y, sum(s,y))

28 /67

Arithmetic operations as primitive recursive functions

Multiplication is repeated addition:
> Informally:
x-0=0

x5(y) = s(x-)

» Formally: prod = Pr(z, Cn[sum, id3id3]]:
prod(x,0) = z(x)

prod(x,s(y)) = sum(x, prod(x,y)) =
Cn[sum, id}, id](x, y, prod(x, y))

This enables us to reduce the computation of a product to the
computations of sums, which we already know how to compute.

29 /67

Strategy
First-order logic and computability toolbox
Ar tization of

ntability of r unctions
lization and S

Arithmetic operations as primitive recursive functions

Exponentiation is repeated multiplication

» Informally:

x-0=0
x-s(y) = s(x-y)
» Formally: exp = Pr[Cnl[s, z], Cn[prod, id3id3]]
exp(x,0) = consti(x) = s(z(x)) = Cnl[s, z](x)
exp(x, s(y)) = prod(x, exp(x,y)) =
Cnlprod, id3id3](x, y, exp(x,y))

This enables us to reduce the computation of an exponentiation to
the computation of products, which we know how to compute.
And so on (super exponentiation is defined in terms of
exponentiation, super-duper-exponentiation in terms of super
exponentiation,...).

30/67

Strategy
First-order logic and computability toolbox
Ar tization of

ntability of r unctions
lization and S

One more effectively computable functions-building
operation

Minimization: Given a computable n+ 1-ary function f the
minimization of f is the n-ary function h (we note Mn [f]) such
that: h(x1, x2, ..., %) =
> the smallest y s.t. f(x1,x2,...,%n,¥) =0, if such a y exists
» undefined if no such y exists.
Recursive function: any function that can be constructed from
the basic functions (of the recursive function theory) by the
function-building operations of composition, primitive recursion
and minimization.

31/67

Strategy

e functions

Recursive functions are effectively computable

» All recursive functions are effectively computable. What about
the converse?

» Church’s Thesis: all effectively computable functions are
recursive.

» "The interest of Church’s Thesis derives largely from the fact
that some particular functions of great interest in logic and
mathematics are nonrecursive. If the thesis is correct, we can
infer the practical advice that logicians and mathematicians
would be wasting their time looking for a set of instructions to
compute the function.” (Boolos)

32/67

Strategy

e functions

Recursive sets/relations

Recursive sets provide many more examples of (primitive) recursive
functions.

> A set of (tuples of) natural numbers is effectively decidable
iff there is an effective procedure that, applied to any (tuple
of) natural number(s), gives in a finite amount of time the
correct answer to the question whether it belongs to the set.

» characteristic function of a set: the function that assigns
value 1 to numbers in the set and the value 0 to numbers not
in the set.

» A (primitive) recursive set is a set whose characteristic
function is (primitive) recursive.

> A set is effectively decidable iff its characteristic function is
effectively computable.

33/67

Strategy
First-order logic and computability toolbox
Arithmetizatio

Representabilit
Diagonalization and fi

Recursive sets/relations are decidable

» Since every recursive function is effectively computable, every
recursive set is decidable.

» Church’s (hypo)thesis (all effectively computable functions are
recursive) implies that all effectively decidable sets are
recursive.

34 /67

Strategy

e functions

More recursive relations

Processes for defining new (primitive) recursive relations when
applied to (primitive) recursive relations:

» Substitution: S(x1,...,xn) <> R(A(X1s s Xn)s ooes Fn(X1, <oy Xn))
» Negation: S(x1,...,xn) <> = R(x1, ..., Xn)

» Conjunction: S(x1, ..., xn) <> R1(x1, ..., xn)&R2(x1, ..., Xpn)

» Disjunction: S(x1,...,%n) <> R1(x1, ..., xn) V R2(x1, ..., Xn)

The negation is simply the complement, the conjunction the
intersection, and the disjunction the union.

» Bounded universal quantification:

S(X1y ey Xny 1) <> Vv < U, R(X1, ...y Xn, V)
» Bounded existential quantification:

S(X1y ey Xny u) <> v < uy, R(x1, ooy Xny V)

35/67

Strategy
First-order logic and computability toolbox
Arithmetization of syntax

R entability of recursive functions
alization and final steps

Arithmetization

We now connect the notions pertaining to computability with the
ones pertaining to FOL in a first direction.

» We are going to show that we can express things about the

syntax of our formal system of arithmetic in the formal system
of arithmetic.

> Necessary preliminary: code expressions of our formal
language by natural numbers.

36

67

Strategy
First-order logic and computability toolbox
Arithmetization of syntax

R entability of recursive functions
alization and final steps

Godel numbering

An encoding function such that it assigns to each symbol of our
formal language (as well as the parenthesis and comma) a unique
number of NN,

» Once every symbol of the language is encoded by its Godel
number, any string of symbols can be represented as a
sequence of natural numbers, which can itself be represented
by a unique number.

» Result: any string of symbols of our language can be
represented /translated by a unique number: terms, formulas,
sentences, proofs.

37/67

Strategy

Godel numbering

One way to do it is to use prime factorization, so that for a string
of symbols (such that g, is the Godel number of the n"symbol).
Example:

> A string of 4 symbols with code numbers g1, g2, g3, g4 will be
encoded by :
> 281 .382.583 .78
Since there is a unique decomposition of any such product, we can
always compute back (decode) to get the unique string of symbols.

Godel used this trick at two levels: to encode sequences of symbols
and to encode sequences of formulas.

38 /67

Strategy
First-order logic and computability toolbox
Arithmetization of syntax

R entability of recursive functions
alization and final steps

Recursive sets of (code numbers of) expressions

We can now define, in a derivative sense of "recursive”:

> A set of symbols or expressions is recursive iff the set of
code numbers of elements of the set in question is recursive
(remember the previous definition: if a set is recursive, its
characteristic function is recursive, and so the belongingness
to the set is decidable).

» A language is recursive iff the set of code numbers of
symbols in the language is recursive.

39 /67

Strategy
First-order logic and computability toolbox
Arithmetization of syntax

Representability of recursive functions
Diagonalization and final steps

Arithmetization of syntax

Important consequences of the numbering:

» The logical operations of negation, disjunction, existential
quantification, substitution of a term (for free occurrences of
a variable), and so on, are recursive. (Example: the function
taking as argument the code number of a sentence and giving
as value the code number of the negation of this sentence is
recursive.)

» The sets of formulas and of sentences of our language are
recursive.

» If A is a recursive set of sentences, then this relation is
recursive: n is the code number of a derivation of the
sentence with code number d from A.

40 /67

Strategy

Any axiomatized theory is semirecursive

The set of sentences deducible from a given recursive set of
sentences IS semirecursive.
» Let X be a recursive set of sentences
» Rsd: s is the code number of a proof of the sentence with
code number d from X.
» The set S of code numbers of sentences deducible from X is
defined by:

Sd + ds Rsd

Positively effectively decidable, because of the (unbounded)
existential quantification: if such a witness s is found, we know
d € S but not negatively, looking forever for a corresponding s.

41 /67

Strategy

What about a complete axiomatized theory?

Sd <+ ds Rsd

» If T is (negation-) complete, then for any number d such that
it is the code number of a sentence D, either d € S, or the
code number dx* of the sentence =D € S.

» If T is inconsistent, d and dx are both in S (since any
sentence can be deduced from a contradiction).

» If T is consistent, d and d* cannot be both in S. So exactly
one of them is in S.

42 /67

Strategy

Any complete axiomatized theory is recursive

» We define the complement of the set of code numbers of
sentences in T by the union of the set of numbers which are
not codes of any sentence at all and the set of code numbers
of sentences not in T. So the complement is semirecursive as
well.

» By Kleene’s complementation principle: if both a set and
its complement are semirecursive, then they both are in fact

recursive. (intuitively: we can check in both sets, and one of
them will give us a positive answer at some point).

» For any given number d, we can decide if it is the code
number of a theorem of T: T is decidable.

43 /67

Strategy
First-order | omputability toolbox
Arithmeti 3

Representability of recursive functions
Diagonalization and final steps

"Talking about” recursive functions IN Lx

Now we want to show that we can talk about recursive functions
directly in our formal language of arithmetic. For this, we are going
to use two notions: definability and representability.

44 /67

Strategy
First-order logic and computability toolbox
Arithmetization of synta

Representability of recursive functions
Diagonalization and final steps

Definability of recursive functions and relations in Lx

» A formula F(x) of the language or arithmetic arithmetically
defines a set S of natural numbers iff:

for all n € IN, n € S iff F(n) is true in Nx

Similarly for functions and relations:

» A function is arithmetical (= arithmetically definable) iff its
graph relation is arithmetical. For a one-place function: f is
arithmetical iff there is a formula F(x, y) of the language of
arithmetic such that for all n and m we have f(n) = m iff
F(n,m) is true in Nx.

» A formula F(x,y) arithmetically defines a two place relation
R on natural numbers iff for all n € IN, n and m we have
(n,m) € R iff F(n,m) is true in Nx.

(similarly for many place relations and functions).

45 /67

Strategy
First-order | omputability toolbox
Arithmeti 3

Representability of recursive functions
Diagonalization and final steps

Definability of recursive functions in Lx

We can show (through a few complications) that all recursive
functions and relations are definable by formulas of Lx, and by
formulas which do not contain unbounded universal quantification
(3-rudimentary formulas).

46 /67

Strategy
First-order logic and computability toolbox
Arithmetization of syntax

Representability of recursive functions
Diagonalization and final steps

Representability of recursive functions

To strengthen this result, we use a theory Q of minimal arithmetic.
We can show that for any recursive function f, we can find a
formula F such that such that F represents f in Q.

» A formula F(x,y) arithmetically represents a binary relation
R on natural numbers iff for all n € IN, n and m we have
(n,m) € R iff F(n,m) is provable from the axioms of Q.

47 /67

r logi omputability toolbox
Arithmetizatio tax

Representability of recursive functions
Diagonalization and final steps

Minimal arithmetic Q

A finite set of axioms, which are correct and strong enough to
prove all correct existential-rudimentary sentences (all correct
sentences which don't contain unbounded universal quantification).
They are not sufficient for number theory, but any set of adequate
axioms of number theory should include them.

48 / 67

Strategy

First-order logic and computability toolbox

Arithmetization of s
ve functions

Diagonalization and final steps

Axioms of Q
Vx,Vy:

1.

[y
©

© 0N wN

0+ X

X =y wx=y

x+0=0

x+y =(x+y)

x-0=0
x-y'=(x-y)+x

x £ 0

x<y & (x<y)Vx=y)
0<y< (y#0)

x<y' e (x<y)&x#y)

49 /67

r logi omputability toolbox
Arithmetizatio tax

Representability of recursive functions
Diagonalization and final steps

A weak theory for a strong result

» Since every recursive function is definable by a correct (not
unbounded universal) formula of Lx, and since Q proves every
such formula, every recursive function is representable in Q.

» Therefore, every recursive function is representable in any
extension of Q.

50 /67

r logi omputability toolbox
Arithmetizatio

Representability of e functions
Diagonalization and final steps

Combining both directions

» We have seen how we can encode any expression of Lx by
numbers and use recursive functions to "talk about” these
expressions in Lx.

» We have seen how we can "talk about” recursive functions in
L.

» Combining both, we can now "talk about” expressions of Lx
IN Lx.

51

67

Strategy
First-order logic and mputability toolbox
tion of

Representability of functions
Diagonalization and final steps

Diagonalization

> Let "A’be the code number of a formula A.
» The diagonalization of A is the expression:
Ix(x = "A'&A)

52 /67

Strategy
First utability toolbox
Arithmetiz

Representa y ve functions
Diagonalization and final steps

Diagonalization of a formula with one free variable

When A is of the form F(x):

>

>

>

For F(t) any instance of F(x): Ix(x =t & F(x)) < F(t).
Diagonalization of A: Ix(x = "A"&A("A"))

Ix(x = "A&A("A")) <> A(A7)

In this particular case, the diagonalization will be true in the

standard interpretation iff A is satisfied by its own Godel
number in the standard interpretation.

53 /67

Strategy
First-order | omputability toolbox
Arithmeti no

Representabilit: rsive functions
Diagonalization and final steps

The Diagonal Lemma

Let T be a theory containing Q.
» Then for any formula B(y) there is a sentence G such that:
F G+« B("GY)

54 /67

Strategy
First utability toolbox
Arithmetiz

Representa y ve functions
Diagonalization and final steps

Any consistent theory of arithmetic is undefinable

Let T be a consistent theory extending Q. Then the set © of code
numbers of theorems of T is not arithmetically definable in T:

» Assume O is definable.
> Let 6(y) be the formula defining it. (y € © iff 8(y) is true).
» By the diagonal lemma, there is a sentence G such that:

F G+ —0("G")

55 /67

nd mputability toolbox

Representability e functions
Diagonalization teps

Any consistent theory of arithmetic is undecidable

v

Let T be a consistent extension of Q.

» We've just shown that T is not arithmetically definable.

v

We already know that every recursive set is arithmetically
definable.

T is not recursive.

v

By Church’s thesis (every decidable function is recursive), T is
not decidable.

v

56 /67

Strategy
First-order logic and computability toolbox
Arithmetization of

Representability o e functions
Diagonalization a teps

The final step

From these two results:
» If T is an axiomatizable complete theory, T is decidable.
» No consistent extension of Q is decidable.

There is no consistent complete axiomatizable
extension of Q.

57 /67

Arithmetization

Representability of recur: functions
Diagonalization and final steps

The end of Hilbert's program?

» maybe, but there is worse!

58 /67

Second Incompleteness Theorem

Second Incompleteness Theorem

» In addition to being incomplete (there are blindspots of the
system), a consistent extension of Q cannot prove its own
consistency!

59 /67

Second Incompleteness Theorem

The end of Hilbert's program!

"If a nice arithmetical theory T can’t even prove itself to be
consistent, it certainly can't prove that a richer theory T+ is
consistent (since if the richer theory is consistent, then any
cut-down part of it is consistent).

Hence we can't use "safe” reasoning of the kind we can encode in
ordinary arithmetic to prove other more "risky” mathematical
theories are in good shape. For example, we can't use
unproblematic arithmetical reasoning to convince ourselves of the
consistency of set theory (with its postulation of a universe of
wildly infinite sets).

And that is a very interesting result, for it seems to sabotage what
is called Hilbert's Programme, which is precisely the project of
defending the wilder reaches of infinitistic mathematics by giving
consistency proofs which use only safe methods.”

(Smith) 60 /67

Related results

Back to set theory

» We said that set theory was inconsistent (Russell's paradox).
Then what is the solution?

» To avoid problems, avoid self-reference!

61 /67

Related results

The cumulative hierarchy of sets

» We can build sets only from what has been " previously”
formed: start with the empty set (). Form the set {(}}
containing () as its only member. Now form the set containing
the empty set plus the set we've just built. Keep on going, at
each stage forming sets having as elements only previously
constructed sets.

» One level at a time!

> Result: the so-called Russell's set is not a set. (Similarly for
other collections which were leading to paradoxes without this
restriction: there is no such thing as the "set of all sets”
anymore, for instance.)

62 /67

Related results

Back to the Liar

» Tarski's theorem of undefinability of truth: the set of code
numbers of correct sentences of arithmetic is not definable.

> Let / be any sentence of a formal language and " /" be
something like its name. lIs it possible to design a formal
system in such a way that we have a predicate T of truth in
the formal language, such that:

METCI")ift ME?
If we want a total truth function and if we want to admit liar
sentences, then no.
» Solution? Avoid self-reference!
» One level at a time!

» But are Liar sentences ill-formed?

63 /67

Related results

Example: Kripke's theory of truth

» Three-valued semantics.

> A sentence containing the truth predicate T applied to a
sentence | will be undefined (neither true nor false) as long as
the truth-value of the sentence / is not previously defined. But
it will become true or false at the next level! Exactly as a set
which would not be defined yet would be defined only as soon
as all his elements are. We can go to higher and higher levels,
but one step at a time.

64 /67

Conclusion

A difference between minds and machines?

» These solutions seem to simply avoid/forbid self-reference.

» But natural language allows us to do it and we are perfectly
able to "see” that the sentence "this sentence is unprovable”
is not false (and therefore, as long as we admit that it must
be either true or false, must be true).

65 /67

Conclusion

Conclusion

"Either mathematics is too big for the human mind or the human
mind is more than a machine.” (Godel)

66 /67

Conclusion

Bibliography

>

Boolos Georges S., Burgess John P., Jeffrey Richard C., 2007,
Computability and Logic, Fifth Edition, Cambridge, CUP.
Cook Roy T., 2009, A Dictionary of Philosophical Logic,
Edinburgh, Edinburgh University Press.

Kripke Saul, 1975, "Outline of a Theory of Truth”, The
Journal of Philosophy, Vol. 72, No. 19, 690-716.

Godel Kurt, "Uber formal unentscheidbare Satze der Principia
Mathematica und verwandter Systeme”, in Solomon
Feferman, ed, 1986, Kurt Godel: Collected Works, volume 1,
144-195, Oxford, OUP. (Original German text with parallel
English translation).

Smith Peter, 2007, Introduction to Gédel’s theorems,
Cambridge, CUP.

67 /67

	Historical preliminaries
	First Incompleteness Theorem
	Statement
	Terminology

	Proof
	Strategy
	First-order logic and computability toolbox
	Arithmetization of syntax
	Representability of recursive functions
	Diagonalization and final steps

	Second Incompleteness Theorem
	Related results
	Conclusion

