LP and its Some of its Metatheory

Graham Priest

LP

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

LP and its Some of its Metatheory

Graham Priest

November 5, 2016

イロト イポト イヨト イヨト

Plan

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

1 LP

- Language and Semantics
- Truth/Falsity Conditions
- Models
- Properties

2 The Collapsing Lemma

- Definitions
- The Collapsing Lemma

3 Inconsistent Models of Arithmetic

- Arithmetic
- Examples

<ロト < 同ト < 三ト

< E

Language of	First-Order	Logic
-------------	-------------	-------

LΡ	aı	٦d	its
Son	۱e	of	its
Met	at	he	ory

Graham Priest

LF

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

Constants: *c*

< □ > < □ > < □ > < □ > < □ > .

æ

LP and its Some of its Metatheory

Graham Priest

LF

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

Constants: *c*

Variables: x

イロト イポト イヨト イヨト

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

- Constants: *c*
- Variables: x
- *n*-place function symbols: f_n

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics

Truth/Falsit Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

- Constants: *c*
- Variables: x
- *n*-place function symbols: *f_n*
- *n*-place predicates: P_n (one P_2 is identity, =)

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

- Constants: *c*
- Variables: x
- *n*-place function symbols: *f_n*
- *n*-place predicates: P_n (one P_2 is identity, =)
- Connectives: \land, \lor, \neg ($A \supset B$ can be defined as $\neg A \lor B$)

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

- Constants: *c*
 - Variables: x
 - *n*-place function symbols: *f_n*
 - *n*-place predicates: P_n (one P_2 is identIty, =)
 - Connectives: \land, \lor, \neg ($A \supset B$ can be defined as $\neg A \lor B$)
 - **Quantifiers**: \forall, \exists

LP and its Some of its Metatheory

Graham Priest

LF

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

An interpretation is a structure $\mathfrak{A} = \langle D, \delta \rangle$ such that:

イロト イポト イヨト イヨト

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Arithmetic Examples

An interpretation is a structure $\mathfrak{A} = \langle D, \delta \rangle$ such that:

D is a non-empty domain (of quantification)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics

Truth/Falsit Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples An interpretation is a structure $\mathfrak{A} = \langle D, \delta \rangle$ such that:

D is a non-empty domain (of quantification)
δ(c) ∈ D

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics

- Truth/Falsit Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Examples

An interpretation is a structure $\mathfrak{A} = \langle D, \delta \rangle$ such that:

- D is a non-empty domain (of quantification)
- $\delta(c) \in D$
- $\delta(f_n)$ is a function from D^n to D

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics

- Truth/Falsit Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Examples

An interpretation is a structure $\mathfrak{A} = \langle D, \delta \rangle$ such that:

- D is a non-empty domain (of quantification)
- $\delta(c) \in D$
- $\delta(f_n)$ is a function from D^n to D
- $\delta(P_n)$ is a pair, $\langle \delta^+(P_n), \delta^-(P_n) \rangle$ such that:

$$\delta^+(P_n) \cup \delta^-(P_n) = D^n$$

•
$$\delta^+(=) = \{ \langle d, d \rangle : d \in D \}$$

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Given any interpretation, \mathfrak{A} :

イロト イポト イヨト イヨト

æ

LP and its Some of its Metatheory

Given any interpretation, \mathfrak{A} :

Graham Priest

LΡ

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

•
$$\delta(f_n t_1 \dots t_n) = \delta(f_n)(\delta(t_1), \dots, \delta(t_n))$$

イロト イポト イヨト イヨト

æ

`

LP and its Some of its Metatheory

Given any interpretation, \mathfrak{A} :

cic .

Graham Priest

LΡ

Language and Semantics Truth/Falsity

Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

•
$$\delta(t_n t_1 \dots t_n) = \delta(t_n)(\delta(t_1), \dots, \delta(t_n))$$

• $\mathfrak{A} \Vdash^+ P_n t_1 \dots t_n \text{ iff } \langle \delta(t_1), \dots, \delta(t_n) \rangle \in \delta^+(P_n)$

CLCN(CL.)

•
$$\mathfrak{A} \Vdash^{-} P_n t_1 ... t_n \text{ iff } \langle \delta(t_1), ..., \delta(t_n) \rangle \in \delta^{-}(P_n)$$

イロト イポト イヨト イヨト

э

C(.))

LP and its Some of its Metatheory

Given any interpretation, \mathfrak{A} :

Graham Priest

LΡ

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

$$\delta(f_n t_1 \dots t_n) = \delta(f_n)(\delta(t_1), \dots, \delta(t_n))$$

$$\mathfrak{A} \Vdash^+ P_n t_1 \dots t_n \text{ iff } \langle \delta(t_1), \dots, \delta(t_n) \rangle \in \delta^+(P_n)$$
$$\mathfrak{A} \Vdash^- P_n t_1 \dots t_n \text{ iff } \langle \delta(t_1), \dots, \delta(t_n) \rangle \in \delta^-(P_n)$$

•
$$\mathfrak{A} \Vdash^+ \neg A$$
 iff $\mathfrak{A} \Vdash^- A$

•
$$\mathfrak{A} \Vdash^{-} \neg A$$
 iff $\mathfrak{A} \Vdash^{+} A$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

LP and its Some of its Metatheory

Given any interpretation, \mathfrak{A} :

Graham Priest

LΡ

Language and Semantics Truth/Falsity

Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsin Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

$$\delta(f_n t_1 \dots t_n) = \delta(f_n)(\delta(t_1), \dots, \delta(t_n))$$

$$\mathfrak{A} \Vdash^+ P_n t_1 \dots t_n \text{ iff } \langle \delta(t_1), \dots, \delta(t_n) \rangle \in \delta^+(P_n)$$

- $\mathfrak{A} \Vdash^{-} P_{n}t_{1}...t_{n} \text{ iff } \langle \delta(t_{1}),...,\delta(t_{n}) \rangle \in \delta^{-}(P_{n})$
- $\mathfrak{A} \Vdash^+ \neg A$ iff $\mathfrak{A} \Vdash^- A$
- $\mathfrak{A} \Vdash^{-} \neg A$ iff $\mathfrak{A} \Vdash^{+} A$
- $\mathfrak{A} \Vdash^+ A \land B$ iff $\mathfrak{A} \Vdash^+ A$ and $\mathfrak{A} \Vdash^+ B$
- $\mathfrak{A} \Vdash^{-} A \land B$ iff $\mathfrak{A} \Vdash^{-} A$ or $\mathfrak{A} \Vdash^{-} B$

(日) (同) (日) (日) (日)

Given any interpretation, \mathfrak{A} :

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions

Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

•
$$\delta(f_n t_1 \dots t_n) = \delta(f_n)(\delta(t_1), \dots, \delta(t_n))$$

$$\mathfrak{A} \Vdash^+ P_n t_1 \dots t_n \text{ iff } \langle \delta(t_1), \dots, \delta(t_n) \rangle \in \delta^+(P_n)$$

$$\mathfrak{A} \Vdash^{-} P_{n} t_{1} ... t_{n} \text{ iff } \langle \delta(t_{1}), ..., \delta(t_{n}) \rangle \in \delta^{-}(P_{n})$$

•
$$\mathfrak{A} \Vdash^+ \neg A$$
 iff $\mathfrak{A} \Vdash^- A$

•
$$\mathfrak{A} \Vdash^{-} \neg A$$
 iff $\mathfrak{A} \Vdash^{+} A$

•
$$\mathfrak{A} \Vdash^+ A \land B$$
 iff $\mathfrak{A} \Vdash^+ A$ and $\mathfrak{A} \Vdash^+ B$

•
$$\mathfrak{A} \Vdash^{-} A \land B$$
 iff $\mathfrak{A} \Vdash^{-} A$ or $\mathfrak{A} \Vdash^{-} B$

•
$$\mathfrak{A} \Vdash^+ A \lor B$$
 iff $\mathfrak{A} \Vdash^+ A$ or $\mathfrak{A} \Vdash^+ B$

$$\mathfrak{A} \Vdash^{-} A \lor B \text{ iff } \mathfrak{A} \Vdash^{-} A \text{ and } \mathfrak{A} \Vdash^{-} B$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Quantifiers

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics

Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Augment the language with a new constant, k_d for every $d \in D$, such that $\delta(k_d) = d$

(日) (同) (三) (三)

Quantifiers

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity

Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Examples

- Augment the language with a new constant, k_d for every $d \in D$, such that $\delta(k_d) = d$
- $\mathfrak{A} \Vdash^+ \forall x A \text{ iff for all } d \in D \ \mathfrak{A} \Vdash^+ A_x(k_d)$
- $\mathfrak{A} \Vdash^{-} \forall x A$ iff for some $d \in D \mathfrak{A} \Vdash^{-} A_{x}(k_{d})$

Quantifiers

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity

Conditions Models Properties

- The Collapsing Lemma
- Definitions The Collapsin Lemma

Inconsistent Models of Arithmetic Arithmetic

- Augment the language with a new constant, k_d for every $d \in D$, such that $\delta(k_d) = d$
- $\mathfrak{A} \Vdash^+ \forall x A$ iff for all $d \in D \mathfrak{A} \Vdash^+ A_x(k_d)$
- $\mathfrak{A} \Vdash^{-} \forall x A$ iff for some $d \in D \mathfrak{A} \Vdash^{-} A_{x}(k_{d})$
- $\mathfrak{A} \Vdash^+ \exists x A$ iff for some $d \in D \mathfrak{A} \Vdash^+ A_x(k_d)$
- $\mathfrak{A} \Vdash^{-} \exists x A$ iff for all $d \in D \mathfrak{A} \Vdash^{-} A_{x}(k_{d})$

Ν.			-	-
Μ	0	a	e	IS

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models

Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

For closed formulas:

• \mathfrak{A} is a *model* of A iff $\mathfrak{A} \Vdash^+ A$

<ロ> <同> <同> < 同> < 同>

æ

Μ	0	de	<u>م</u> اد
1 1 1	0	uc	-13

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models

Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples For closed formulas:

• \mathfrak{A} is a *model* of A iff $\mathfrak{A} \Vdash^+ A$

• \mathfrak{A} is a *model* of Σ iff $\mathfrak{A} \Vdash^+ A$, for every $A \in \Sigma$

(日) (同) (三) (三)

Models

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions

Models Properties

The Collapsin Lemma

Definitions The Collapsin Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

For closed formulas:

• \mathfrak{A} is a *model* of A iff $\mathfrak{A} \Vdash^+ A$

- \mathfrak{A} is a *model* of Σ iff $\mathfrak{A} \Vdash^+ A$, for every $A \in \Sigma$
- $\Sigma \models_{LP} A$ iff every model of Σ is a model of A

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples An interpretation is classical if $\delta^+(P_n) \cap \delta^-(P_n) = \emptyset$, for every P_n

• Every classical interpretation is an *LP* interpretation

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples An interpretation is *classical* if $\delta^+(P_n) \cap \delta^-(P_n) = \emptyset$, for every P_n

• Every classical interpretation is an *LP* interpretation

$$\Sigma \models_{LP} A \Rightarrow \Sigma \models_{CL} A$$

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

An interpretation is *classical* if $\delta^+(P_n) \cap \delta^-(P_n) = \emptyset$, for every P_n

• Every classical interpretation is an *LP* interpretation

•
$$\Sigma \models_{LP} A \Rightarrow \Sigma \models_{CL} A$$

• $\{A, \neg A\} \not\models_{LP} B$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

- An interpretation is *classical* if $\delta^+(P_n) \cap \delta^-(P_n) = \emptyset$, for every P_n
- Every classical interpretation is an LP interpretation

•
$$\Sigma \models_{LP} A \Rightarrow \Sigma \models_{CL} A$$

$$\blacksquare \{A, \neg A\} \not\models_{LP} B$$

•
$$\Sigma \models_{CL} A \not\Rightarrow \Sigma \models_{LP} A$$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

- An interpretation is *classical* if $\delta^+(P_n) \cap \delta^-(P_n) = \emptyset$, for every P_n
- Every classical interpretation is an LP interpretation

•
$$\Sigma \models_{LP} A \Rightarrow \Sigma \models_{CL} A$$

$$\blacksquare \{A, \neg A\} \not\models_{LP} B$$

•
$$\Sigma \models_{CL} A \not\Rightarrow \Sigma \models_{LP} A$$

But
$$\emptyset \models_{CL} A \Leftrightarrow \emptyset \models_{LP} A$$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

• Let \mathfrak{A} be an *LP* interpretation.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing

Inconsistent Models of Arithmetic

Arithmetic Examples

- Let \mathfrak{A} be an *LP* interpretation.
- Let \sim be an equivalence relation on the domain of \mathfrak{A} .

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions
- The Collapsing Lemma
- Inconsistent Models of Arithmetic Arithmetic
- Examples

- Let \mathfrak{A} be an *LP* interpretation.
- \blacksquare Let \sim be an equivalence relation on the domain of $\mathfrak{A}.$
- which is a congruence relation on the interpretations of the function symbols in the language:
 - $d_1 \sim e_1, \dots d_n \sim e_n \Rightarrow \delta(f_n)(d_1, \dots, d_n) \sim \delta(f_n)(e_1, \dots, e_n)$

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsin
- Inconsistent Models of Arithmetic Arithmetic
- Examples

- Let \mathfrak{A} be an *LP* interpretation.
- \blacksquare Let \sim be an equivalence relation on the domain of $\mathfrak{A}.$
- which is a congruence relation on the interpretations of the function symbols in the language:
 - $\bullet d_1 \sim e_1, \dots d_n \sim e_n \Rightarrow \delta(f_n)(d_1, \dots, d_n) \sim \delta(f_n)(e_1, \dots, e_n)$
- If $d \in D$, [d] is the equivalence class of d.

Collapsed Models, Ctd.

LP and its Some of its Metatheory

Graham Priest

LP

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Define the collapsed interpretation, $\widetilde{\mathfrak{A}} = \left\langle \widetilde{D}, \widetilde{\delta} \right\rangle$:

$$D = \{ [d] : d \in D \}$$

 \sim

Collapsed Models, Ctd.

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Define the collapsed interpretation, $\widetilde{\mathfrak{A}} = \left\langle \widetilde{D}, \widetilde{\delta} \right\rangle$:

$$D = \{[d] : d \in D\}$$

 $\bullet \widetilde{\delta}(c) = [c]$

 \sim

< 日 > < 同 > < 三 > < 三 >

Collapsed Models, Ctd.

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions

Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Define the collapsed interpretation, $\widetilde{\mathfrak{A}} = \left\langle \widetilde{D}, \widetilde{\delta} \right\rangle$:

$$D = \{[d] : d \in D\}$$

 $\bullet \widetilde{\delta}(c) = [c]$

 \sim

 \sim

•
$$\delta(f_n)([d_1],...,[d_n]) = [\delta(f_n)(d_1,...,d_n)]$$

< 日 > < 同 > < 三 > < 三 >

Collapsed Models, Ctd.

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

Define the collapsed interpretation, $\widetilde{\mathfrak{A}} = \left\langle \widetilde{D}, \widetilde{\delta} \right\rangle$:

$$D = \{ [d] : d \in D \}$$

 $\bullet \widetilde{\delta}(c) = [c]$

~

 \sim

•
$$\delta(f_n)([d_1],...,[d_n]) = [\delta(f_n)(d_1,...,d_n)]$$

• $\langle [d_1], ..., [d_n] \rangle \in \overset{\sim}{\delta}^+(P_n)$ iff for some $e_1 \sim d_1, ..., e_n \sim d_n$ $\langle e_1, ..., e_n \rangle \in \delta^+(P_n)$

< 日 > < 同 > < 三 > < 三 >

Collapsed Models, Ctd.

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic Define the collapsed interpretation, $\widetilde{\mathfrak{A}} = \left\langle \widetilde{D}, \widetilde{\delta} \right\rangle$:

$$D = \{ [d] : d \in D \}$$

 $\bullet \widetilde{\delta}(c) = [c]$

$$\delta(f_n)([d_1],...,[d_n]) = [\delta(f_n)(d_1,...,d_n)]$$

• $\langle [d_1], ..., [d_n] \rangle \in \widetilde{\delta}^+(P_n)$ iff for some $e_1 \sim d_1, ..., e_n \sim d_n$ $\langle e_1, ..., e_n \rangle \in \delta^+(P_n)$

• $\langle [d_1], ..., [d_n] \rangle \in \widetilde{\delta}^-(P_n)$ iff for some $e_1 \sim d_1, ..., e_n \sim d_n$, $\langle e_1, ..., e_n \rangle \in \delta^-(P_n)$

The Collapsing Lemma

LP and its Some of its Metatheory If \mathfrak{A} is any *LP* interpretation, and \mathfrak{A} is any collapse: The Collapsing Lemma

xamples

< 日 > < 同 > < 三 > < 三 >

The Collapsing Lemma

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions

The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic If \mathfrak{A} is any *LP* interpretation, and $\overset{\sim}{\mathfrak{A}}$ is any collapse:

 $\bullet \ \widetilde{\delta}(t) = [\delta(t)]$

< 日 > < 同 > < 三 > < 三 >

The Collapsing Lemma

LP and its Some of its Metatheory

Graham Priest

LP

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic Examples If ${\mathfrak A}$ is any LP interpretation, and ${\widetilde {\mathfrak A}}$ is any collapse:

$$\widetilde{\delta}(t) = [\delta(t)]$$

■ If
$$\mathfrak{A} \Vdash^+ A$$
 then $\widetilde{\mathfrak{A}} \Vdash^+ A$
■ If $\mathfrak{A} \Vdash^- A$ then $\widetilde{\mathfrak{A}} \Vdash^- A$

< 日 > < 同 > < 三 > < 三 >

The Language of Arithmetic

Graham Priest

LP

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

Constants: 0

Graham Priest LP and its Some of its Metatheory

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Language of Arithmetic

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Constants: 0

• Function symbols: ', +, ×.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Language of Arithmetic

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples Constants: 0

• Function symbols: ', +, ×.

Predicates: =

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

• \mathfrak{N} is the standard (classical) model of arithmetic

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

- $\blacksquare \ \mathfrak{N}$ is the standard (classical) model of arithmetic
- Its domain is the natural numbers

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language an Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Arithmetic Examples

- $\blacksquare \ \mathfrak{N}$ is the standard (classical) model of arithmetic
- Its domain is the natural numbers
- 0 denotes zero

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Arithmetic Examples

- $\blacksquare \ \mathfrak{N}$ is the standard (classical) model of arithmetic
- Its domain is the natural numbers
- 0 denotes zero
- \blacksquare ', +, \times denote successor, addition, and multiplication

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Arithmetic Examples

- $\blacksquare \ \mathfrak{N}$ is the standard (classical) model of arithmetic
- Its domain is the natural numbers
- 0 denotes zero
- \blacksquare ', +, \times denote successor, addition, and multiplication
- \blacksquare = is the identity relation

Collapsing Models of Arithmetic

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

• $Th(\mathfrak{N})$ is the set of sentence true in the standard model

(日) (同) (三) (三)

Collapsing Models of Arithmetic

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples • $Th(\mathfrak{N})$ is the set of sentence true in the standard model

• Let \mathfrak{M} be any model of $Th(\mathfrak{N})$

Collapsing Models of Arithmetic

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsin Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

- $Th(\mathfrak{N})$ is the set of sentence true in the standard model
- Let \mathfrak{M} be any model of $Th(\mathfrak{N})$
- Let \mathfrak{M} be any collapsed interpretation $\widetilde{\mathfrak{m}}$:
- \mathfrak{M} is a model of $Th(\mathfrak{N})$

<ロト < 同ト < 三ト

< E

LP and its Some of its Metatheory

Graham Priest

LP

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Examples

$\blacksquare \ \mathfrak{M}$ is any non-standard model of arithmetic

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples $\blacksquare \ \mathfrak{M}$ is any non-standard model of arithmetic

d ∼ *e* iff (*d* and *e* are standard and *d* = *e*) or (*d* and *e* are non-standard)

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples ■ 𝔐 is any non-standard model of arithmetic

d ∼ *e* iff (*d* and *e* are standard and *d* = *e*) or (*d* and *e* are non-standard)

 $0 \rightarrow 1 \rightarrow 2 \rightarrow \dots i$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Examples

- $\blacksquare \ \mathfrak{M}$ is any non-standard model of arithmetic
- *d* ∼ *e* iff (*d* and *e* are standard and *d* = *e*) or (*d* and *e* are non-standard)

 \frown

$$0 \rightarrow 1 \rightarrow 2 \rightarrow \dots i$$

•
$$\mathfrak{\widetilde{M}} \models \exists x \ x = x'$$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

- Language and Semantics Truth/Falsity Conditions Models Properties
- The Collapsing Lemma
- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Examples

- $\blacksquare \ \mathfrak{M}$ is any non-standard model of arithmetic
- *d* ∼ *e* iff (*d* and *e* are standard and *d* = *e*) or (*d* and *e* are non-standard)
 - $0 \rightarrow 1 \rightarrow 2 \rightarrow \dots i$

•
$$\widetilde{\mathfrak{M}} \models \exists x \ x = x'$$

•
$$\widetilde{\mathfrak{M}} \not\models 0 = 0'$$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

$\blacksquare \ \mathfrak{N}$ is the standard model

<ロ> <同> <同> < 同> < 同>

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsing Lemma

- Definitions The Collapsing Lemma
- Inconsistent Models of Arithmetic
- Arithmetic Examples

$\blacksquare \mathfrak{N}$ is the standard model

• n, p are a natural numbers > 0

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LP and its Some of its Metatheory

Graham Priest

LΡ

Language an Semantics Truth/Falsity Conditions Models Properties

The Collapsir

- Definitions The Collapsin
- Inconsistent Models of Arithmetic
- Arithmetic Examples

M is the standard model

- n, p are a natural numbers > 0
- $d \sim e$ iff (d, e < n and d = e) or $(d, e \ge n$ and d = e[mod p])

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic Arithmetic

Examples

M is the standard model

• n, p are a natural numbers > 0

• $d \sim e$ iff (d, e < n and d = e) or $(d, e \ge n$ and d = e[mod p])

$$n+p-1 \leftarrow \dots \leftarrow n+3$$

 $\downarrow \qquad \uparrow$
 $0 \rightarrow 1 \rightarrow \dots \rightarrow n \rightarrow n+1 \rightarrow n+2$

(日) (同) (三) (三)

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Examples

$$\mathfrak{n} \models \exists x \ x = x \ ' \cdots '$$

•
$$\mathfrak{N} \not\models 0 = 0'$$

 \sim

<ロ> <同> <同> < 同> < 同>

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

The Collapsin Lemma

Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Arithmetic Examples

$$\mathfrak{N} \models \exists x \ x = x \ ' \cdots '$$

•
$$\mathfrak{N} \not\models 0 = 0'$$

 \sim

• $\widetilde{\mathfrak{N}}$ is finite

<ロ> <同> <同> < 同> < 同>

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

- The Collapsin Lemma
- Definitions The Collapsin Lemma

Inconsistent Models of Arithmetic

Examples

$$\mathfrak{n} \models \exists x \ x = x \ ' \cdots '$$

• $\mathfrak{N} \not\models 0 = 0'$

 \sim

 $\widetilde{\mathfrak{N}}$ is finite

• Hence $Th(\widetilde{\mathfrak{N}})$ is decidable

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

LP and its Some of its Metatheory

Graham Priest

LΡ

Language and Semantics Truth/Falsity Conditions Models Properties

- The Collapsin Lemma
- Definitions The Collapsing Lemma

Inconsistent Models of Arithmetic

Examples

- $\mathfrak{M} \models \exists x \ x = x \ ' \cdots '$
- $\widetilde{\mathfrak{N}} \not\models \mathbf{0} = \mathbf{0}'$

 $\widetilde{\mathfrak{N}}$ is finite

- Hence $Th(\widetilde{\mathfrak{N}})$ is decidable
- So it is axiomatic

(日) (同) (三) (三)