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Language of First-Order Logic

Constants: c

Variables: x

n-place function symbols: fn

n-place predicates: Pn (one P2 is identIty, =)

Connectives: ∧,∨,¬ (A ⊃ B can be defined as ¬A ∨ B)

Quantifiers: ∀,∃
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Interpretations

An interpretation is a structure A = 〈D, δ〉 such that:

D is a non-empty domain (of quantification)

δ(c) ∈ D

δ(fn) is a function from Dn to D

δ(Pn) is a pair, 〈δ+(Pn), δ−(Pn)〉 such that:

δ+(Pn) ∪ δ−(Pn) = Dn

δ+(=) = {〈d , d〉 : d ∈ D}
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Truth/Falsity Conditions

Given any interpretation, A:

δ(fnt1...tn) = δ(fn)(δ(t1), ..., δ(tn))

A + Pnt1...tn iff 〈δ(t1), ..., δ(tn)〉 ∈ δ+(Pn)

A − Pnt1...tn iff 〈δ(t1), ..., δ(tn)〉 ∈ δ−(Pn)

A + ¬A iff A − A

A −¬A iff A + A

A + A ∧ B iff A + A and A + B

A − A ∧ B iff A − A or A − B

A + A ∨ B iff A + A or A + B

A − A ∨ B iff A − A and A − B
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Quantifiers

Augment the language with a new constant, kd for every
d ∈ D, such that δ(kd) = d

A + ∀xA iff for all d ∈ D A + Ax(kd)

A − ∀xA iff for some d ∈ D A − Ax(kd)

A + ∃xA iff for some d ∈ D A + Ax(kd)

A − ∃xA iff for all d ∈ D A − Ax(kd)
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Models

For closed formulas:

A is a model of A iff A + A

A is a model of Σ iff A + A, for every A ∈ Σ

Σ |=LP A iff every model of Σ is a model of A
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Properties of Consequence

An interpretation is classical if δ+(Pn) ∩ δ−(Pn) = ∅, for
every Pn

Every classical interpretation is an LP interpretation

Σ |=LP A⇒ Σ |=CL A

{A,¬A} 6|=LP B

Σ |=CL A 6⇒ Σ |=LP A

But ∅ |=CL A ⇔ ∅ |=LP A
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Collapsed Models

Let A be an LP interpretation.

Let ∼ be an equivalence relation on the domain of A.

which is a congruence relation on the interpretations of
the function symbols in the language:

d1 ∼ e1, ... dn ∼ en ⇒ δ(fn)(d1, ..., dn) ∼ δ(fn)(e1, ..., en)

If d ∈ D, [d ] is the equivalence class of d .
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Collapsed Models, Ctd.

Define the collapsed interpretation,
∼
A =

〈
∼
D,

∼
δ

〉
:

∼
D = {[d ] : d ∈ D}

∼
δ(c) = [c]

∼
δ(fn)([d1], ..., [dn]) = [δ(fn)(d1, ..., dn)]

〈[d1], ..., [dn]〉 ∈
∼
δ

+

(Pn) iff for some e1 ∼ d1, ...,en ∼ dn
〈e1, ..., en〉 ∈ δ+(Pn)

〈[d1], ..., [dn]〉 ∈
∼
δ
−

(Pn) iff for some e1 ∼ d1, ...,en ∼ dn,
〈e1, ..., en〉 ∈ δ−(Pn)
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The Collapsing Lemma

If A is any LP interpretation, and
∼
A is any collapse:

∼
δ(t) = [δ(t)]

If A + A then
∼
A + A

If A − A then
∼
A − A
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The Language of Arithmetic

Constants: 0

Function symbols: ′, +, ×.

Predicates: =
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The Standard Model

N is the standard (classical) model of arithmetic

Its domain is the natural numbers

0 denotes zero

′, +, × denote successor, addition, and multiplication

= is the identity relation
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Collapsing Models of Arithmetic

Th(N) is the set of sentence true in the standard model

Let M be any model of Th(N)

Let
∼
M be any collapsed interpretation

∼
M is a model of Th(N)
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Example 1

M is any non-standard model of arithmetic

d ∼ e iff (d and e are standard and d = e) or (d and e
are non-standard)

y
0 → 1 → 2 → ... i

∼
M |= ∃x x = x ′

∼
M 6|= 0 = 0′
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Example 2

N is the standard model

n, p are a natural numbers > 0

d ∼ e iff (d , e < n and d = e) or (d , e ≥ n and d = e
[mod p])

n + p − 1 ← ... ← n + 3
↓ ↑

0 → 1 → ... → n → n + 1 → n + 2
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Axiomatizability

∼
N |= ∃x x = x ′ · · ·′
∼
N 6|= 0 = 0′

∼
N is finite

Hence Th(
∼
N) is decidable

So it is axiomatic
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