Remarks on Gödel's Incomplentess Theorems
 SATO Kentaro*

sato@inf.unibe.ch

SGSLPS Autumn 2016
*His research is supported by John Templeton Foundation

Quiz 1

- Gödel's Completeness Theorem (1929):

The first order classical logic is complete.

Quiz 1

- Gödel's Completeness Theorem (1929): The first order classical logic is complete. Henkin (1947) strengthened: Any theory over the first order classical logic is complete.

Quiz 1

- Gödel's Completeness Theorem (1929): The first order classical logic is complete.
Henkin (1947) strengthened:
Any theory over the first order classical logic is complete.
In particular:
Peano Arithmetic PA is complete.

Quiz 1

- Gödel's Completeness Theorem (1929): The first order classical logic is complete.
Henkin (1947) strengthened:
Any theory over the first order classical logic is complete.
In particular:
Peano Arithmetic PA is complete.
- Gödel's 1st Incompleteness Theorem (1931): PA is incomplete.

Quiz 1 - Which is correct?

- Gödel's Completeness Theorem (1929): The first order classical logic is complete.
Henkin (1947) strengthened:
Any theory over the first order classical logic is complete.
In particular:
Peano Arithmetic PA is complete.
- Gödel's 1st Incompleteness Theorem (1931): PA is incomplete.

Quiz 2

- Hilbert's Programme looks for:
a complete and decidable axiomatization of real numbers.

Quiz 2

- Hilbert's Programme looks for:
a complete and decidable axiomatization of real numbers.
Gödel Incompleteness Theorem answers:
"impossible".

Quiz 2

- Hilbert's Programme looks for:
a complete and decidable axiomatization of real numbers.
Gödel Incompleteness Theorem answers:
"impossible".
- Tarski's Theorem (1951):
quantifier elimination of real closed field.

Quiz 2

- Hilbert's Programme looks for:
a complete and decidable axiomatization of real numbers.
Gödel Incompleteness Theorem answers:
"impossible".
- Tarski's Theorem (1951):
quantifier elimination of real closed field.
As a consequence, it yields:
a complete and decidable axiomatization of $(\mathbb{R}, 0,1,-,+, \cdot,<)$.

Quiz 2 - Which is correct?

- Hilbert's Programme looks for:
a complete and decidable axiomatization of real numbers.
Gödel Incompleteness Theorem answers: "impossible".
- Tarski's Theorem (1951):
quantifier elimination of real closed field.
As a consequence, it yields:
a complete and decidable axiomatization of $(\mathbb{R}, 0,1,-,+, \cdot,<)$.

Quiz 3

- Gödel 2nd Incompleteness (1931): PA cannot prove a sentence which represents the consistency of PA.

Quiz 3

- Gödel 2nd Incompleteness (1931):

PA cannot prove a sentence which represents the consistency of PA.

- Kreisel's Remark (1960):

PA does prove a sentence which represents the consistency of PA.

Quiz 3 - Which is correct?

- Gödel 2nd Incompleteness (1931): PA cannot prove a sentence which represents the consistency of PA.
- Kreisel's Remark (1960):

PA does prove a sentence which represents the consistency of PA.

Outline

1. Know the statement correctly (40min):

- the notions in the statement correctly;
- the preconditions correctly;
- counterexamples to preconditions?

Outline

1. Know the statement correctly (40min):

- the notions in the statement correctly;
- the preconditions correctly;
- counterexamples to preconditions?

2. A brief look at the proofs (15 min):

- ω-consistency;
- Gödel sentence vs. Rosser sentence;
- Kreisel's remark;
- Loeb's derivability conditions;

Outline

1. Know the statement correctly (40min):

- the notions in the statement correctly;
- the preconditions correctly;
- counterexamples to preconditions?

2. A brief look at the proofs (15 min):

- ω-consistency;
- Gödel sentence vs. Rosser sentence;
- Kreisel's remark;
- Loeb's derivability conditions;

3. Connection to the present-day researches (5min):

- Gödel hierarchy;
- my own contributions.

1. Know the Statement Correctly

The Statement

If a first order theory T satisfies the following:
\qquad

\bullet
...
then the following hold:
1st incompleteness: T is incomplete;
2nd incompleteness: T cannot prove a sentence which represents the consistency of T.

The Statement

If a first order theory T satisfies the following:

- ...
\bullet
- ...
then the following hold:
1st incompleteness: T is incomplete;

The Statement

If a first order theory T satisfies the following:

- ...
\bullet
- ...
then the following hold:
1st incompleteness: T is not complete.

Three Completenesses

Semantical Completeness
"provable" \Leftrightarrow "true in any model":

- (Weak) $\vdash \varphi \Longleftrightarrow \vDash \varphi$;
- (Strong) $\Gamma \vdash \varphi \Longleftrightarrow \Gamma \models \varphi$.

Negation Completeness

Arithmetical Completeness

Three Completenesses

Semantical Completeness
"provable" \Leftrightarrow "true in any model":

- (Weak) $\vdash \varphi \Longleftrightarrow \quad \vDash \varphi$;
- (Strong) $\Gamma \vdash \varphi \Longleftrightarrow \Gamma \models \varphi$.

Negation Completeness
T can prove or disprove any sentence in L_{T} :

- $T \vdash \varphi$ or $T \vdash \neg \varphi$ for any sentence $\varphi \in L_{T}$.

Arithmetical Completeness

Three Completenesses

Semantical Completeness
"provable" \Leftrightarrow "true in any model":

- (Weak)
$\vdash \varphi$

- (Strong) $\Gamma \vdash \varphi \Longleftrightarrow \Gamma \models \varphi$.

Negation Completeness
T can prove or disprove any sentence in L_{T} :

- $T \vdash \varphi$ or $T \vdash \neg \varphi$ for any sentence $\varphi \in L_{T}$.

Arithmetical Completeness
"provable" \Leftrightarrow "true in the intended model":

- $T \vdash \varphi \Longleftrightarrow \mathbb{N} \models \varphi$.

Three Completenesses

Semantical Completeness

- Gödel-Henkin's completeness theorem;
- Kripke completeness (modal logics, intuitionistic logic).

Negation Completeness

Arithmetical Completeness

Three Completenesses

Semantical Completeness

- Gödel-Henkin's completeness theorem;
- Kripke completeness (modal logics, intuitionistic logic).

Negation Completeness

- Gödel(-Rosser)'s 1st incompleteness theorem;
- completeness of theories of algebraic closed / real closed fields

Arithmetical Completeness

Three Completenesses

Semantical Completeness

- Gödel-Henkin's completeness theorem;
- Kripke completeness (modal logics, intuitionistic logic).

Negation Completeness

- Gödel(-Rosser)'s 1st incompleteness theorem;
- completeness of theories of algebraic closed / real closed fields

Arithmetical Completeness
Σ_{1}^{0} completeness (of Q, PA, ZFC, etc.)

Quiz 1 — Which is correct?

- Gödel's Completeness Theorem (1929):

The first order classical logic is complete.
Henkin (1947) strengthened:
Any theory over the first order classical logic is complete.
In particular:
Peano Arithmetic PA is complete.

- Gödel's 1st Incompleteness Theorem (1931):

PA is incomplete.

The Statement (2)

If a first order theory T satisfies the following:

then the following hold:
1st incompleteness: T is not complete.

The Statement (2)

If a first order theory T satisfies the following:

- T is consistent;
then the following hold:
1st incompleteness: T is not complete.

The Statement (2)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
then the following hold:
1st incompleteness: T is not complete.

The Statement (2)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete.

Consistency

A first order theory T is consistent iff

- $T \nvdash \perp$ and/or
- $T \nvdash \varphi$ for some φ and/or
- either $T \nvdash \varphi$ or $T \nvdash \neg \varphi$ for any φ, i.e.,

Consistency

A first order theory T is consistent iff

- $T \nvdash \perp$ and/or
- $T \nvdash \varphi$ for some φ and/or
- either $T \nvdash \varphi$ or $T \nvdash \neg \varphi$ for any φ, i.e., it's not the case that $T \vdash \varphi$ and $T \vdash \neg \varphi$.

Consistency

A first order theory T is consistent iff

- $T \nvdash \perp$ and/or
- $T \nvdash \varphi$ for some φ and/or
- either $T \nvdash \varphi$ or $T \nvdash \neg \varphi$ for any φ, i.e., it's not the case that $T \vdash \varphi$ and $T \vdash \neg \varphi$.

If T is not consistent,

Consistency

A first order theory T is consistent iff

- $T \nvdash \perp$ and/or
- $T \nvdash \varphi$ for some φ and/or
- either $T \nvdash \varphi$ or $T \nvdash \neg \varphi$ for any φ, i.e., it's not the case that $T \vdash \varphi$ and $T \vdash \neg \varphi$.

If T is not consistent,

- $T \vdash \varphi$ for any φ;
- hence either $T \vdash \varphi$ or $T \vdash \neg \varphi$ (negation completeness).

The Statement (3)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete.

Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\left\{\left\ulcorner\varphi^{\urcorner} \mid \varphi \in \Gamma\right\}\right.$ is decidable;

Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi \mid \varphi \in \Gamma\}$ is decidable;
and/or
- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi \mid \varphi \in \Gamma\}$ is semi-decidable;

Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi \mid \varphi \in \Gamma\}$ is decidable;
and/or
- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi\urcorner \mid \varphi \in \Gamma\}$ is semi-decidable;
and/or
- $\{\ulcorner\varphi\urcorner \mid T \vdash \varphi\}$ is semi-decidable.

Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi \mid \varphi \in \Gamma\}$ is decidable;
and/or
- there is Γ such that
- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\lceil\varphi \mid \varphi \in \Gamma\}$ is semi-decidable;
and/or
- $\{\ulcorner\varphi\urcorner \mid T \vdash \varphi\}$ is semi-decidable.
$\operatorname{Th}(\mathbb{N})=\left\{\varphi \in L_{\mathrm{PA}} \mid \mathbb{N} \models \varphi\right\}$ is negation complete.

Craig's Theorem

If $\{\ulcorner\varphi \mid T \vdash \varphi\}$ is semi-decidable, then there is Γ such that

- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\left\{\Gamma \varphi^{\top} \mid \varphi \in \Gamma\right\}$ is decidable

Craig's Theorem

If $\{\ulcorner\varphi \backslash T \vdash \varphi\}$ is semi-decidable, then there is Γ such that

- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\left\{\Gamma \varphi^{\urcorner} \mid \varphi \in \Gamma\right\}$ is decidable
(Proof) Take a recursive predicate R such that

$$
T \vdash \varphi \Longleftrightarrow \exists n R(\ulcorner\varphi\urcorner, n) \text { for any } \varphi \in L_{T} .
$$

Craig's Theorem

If $\{\ulcorner\varphi \mid T \vdash \varphi\}$ is semi-decidable,
then there is Γ such that

- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\left\{\left\ulcorner\varphi^{\urcorner} \mid \varphi \in \Gamma\right\}\right.$ is decidable
(Proof) Take a recursive predicate R such that

$$
T \vdash \varphi \Longleftrightarrow \exists n R(\ulcorner\varphi\urcorner, n) \text { for any } \varphi \in L_{T} .
$$

Define the following recursive set of axioms
$\Gamma=\{\psi \mid(\exists n,\ulcorner\varphi\urcorner<\ulcorner\psi\urcorner)(R(\ulcorner\varphi\urcorner, n) \& \psi \equiv \varphi \wedge \ldots \wedge \varphi)\}$.

Craig's Theorem

If $\{\ulcorner\varphi \mid T \vdash \varphi\}$ is semi-decidable,
then there is Γ such that

- $\Gamma \vdash \varphi \Longleftrightarrow T \vdash \varphi$ for any $\varphi \in L_{T}$ and
- $\{\ulcorner\varphi \mid \varphi \in \Gamma\}$ is decidable
(Proof) Take a recursive predicate R such that

$$
T \vdash \varphi \Longleftrightarrow \exists n R(\ulcorner\varphi\urcorner, n) \text { for any } \varphi \in L_{T} .
$$

Define the following recursive set of axioms

$$
\Gamma=\{\psi \mid(\exists n,\ulcorner\varphi\urcorner<\ulcorner\psi\urcorner)(R(\ulcorner\varphi\urcorner, n) \& \psi \equiv \varphi \wedge \ldots \wedge \varphi)\} .
$$

$$
\text { - } \psi \in \Gamma \Rightarrow T \vdash \varphi \& \psi \equiv \varphi \wedge \ldots \wedge \varphi \Rightarrow T \vdash \psi ;
$$

$$
\text { - } T \vdash \varphi \Rightarrow \exists n R(\Gamma \varphi, n) \Rightarrow \underbrace{\varphi \wedge \ldots \wedge \varphi}_{n+1} \in \Gamma \Rightarrow \Gamma \vdash \varphi
$$

Henkin Construction

Henkin's Lemma:
 If $\Gamma \nvdash \perp$ then there is maximal consistent $\Delta \supseteq \Gamma$.

Henkin Construction

Henkin's Lemma:

If $\Gamma \nvdash \perp$ then there is maximal consistent $\Delta \supseteq \Gamma$.
(Proof) Let φ_{n} 's enumerate all L formulae. Define

$$
\Gamma_{n+1}:= \begin{cases}\Gamma_{n} & \text { if } \Gamma_{n} \cup\left\{\varphi_{n}\right\} \vdash \perp \\ \Gamma_{n} \cup\left\{\varphi_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{\varphi_{n}\right\} \nvdash \perp .\end{cases}
$$

starting from $\Gamma_{0}:=\Gamma$. Take $\Delta:=\bigcup_{n \in \omega} \Gamma_{n}$.

Henkin Construction

Henkin's Lemma:

If $\Gamma \nvdash \perp$ then there is maximal consistent $\Delta \supseteq \Gamma$.
(Proof) Let φ_{n} 's enumerate all L formulae. Define

$$
\Gamma_{n+1}:= \begin{cases}\Gamma_{n} & \text { if } \Gamma_{n} \cup\left\{\varphi_{n}\right\} \vdash \perp \\ \Gamma_{n} \cup\left\{\varphi_{n}\right\} & \text { if } \Gamma_{n} \cup\left\{\varphi_{n}\right\} \nvdash \perp .\end{cases}
$$

starting from $\Gamma_{0}:=\Gamma$. Take $\Delta:=\bigcup_{n \in \omega} \Gamma_{n}$.

Note:
The theory generated by Δ is negation complete: either $\varphi \in \Delta$ or $\neg \varphi \in \Delta$ holds for any $\varphi \in L$.

The Statement (4)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete.

Robinson Arithmetic Q

Language (function) $0 ; S(-) ;+, \cdot ;$ (relation) $<$.
Axioms 1. $\neg(S(x)=0)$;

$$
\begin{aligned}
& \text { 2. } S(x)=S(y) \rightarrow x=y \text {; } \\
& \text { 3. } x=0 \vee \exists y(x=S(y)) \text {; } \\
& \text { 4. } x+0=x \text {; and } x+S(y)=S(x+y) \text {; } \\
& \text { 5. } x \cdot 0=0 \text {; and } x \cdot S(y)=(x \cdot y)+x \text {; } \\
& \text { 6. } x<y \leftrightarrow \exists z(x+S(z)=y) \text {. }
\end{aligned}
$$

Robinson Arithmetic Q

Language (function) $0 ; S(-) ;+, \cdot ;$ (relation) $<$.
Axioms 1. $\neg(S(x)=0)$;

$$
\begin{aligned}
& \text { 2. } S(x)=S(y) \rightarrow x=y ; \\
& \text { 3. } x=0 \vee \exists y(x=S(y)) \text {; } \\
& \text { 4. } x+0=x \text {; and } x+S(y)=S(x+y) \text {; } \\
& \text { 5. } x \cdot 0=0 \text {; and } x \cdot S(y)=(x \cdot y)+x \text {; } \\
& \text { 6. } x<y \leftrightarrow \exists z(x+S(z)=y) \text {. }
\end{aligned}
$$

Remarks

- first introduced by R. M. Robison in 1950 w/o <;
- has no induction axiom (schema).

Theories containing Q

- PA extends Q by induction scheme:

$$
\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi(S(x)) \rightarrow \forall x \varphi(x) \text { for } \varphi \in L_{\mathbf{Q}} .\right.
$$

Theories containing Q

- PA extends Q by induction scheme: $\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi(S(x)) \rightarrow \forall x \varphi(x)\right.$ for $\varphi \in L_{\mathbf{Q}}$.
- $\mathbf{I} \Sigma_{n}$ extends Q by induction for Σ_{n}^{0} formulae:

1. $\Sigma_{n}^{0}=\left\{\exists x_{n} \forall x_{n-1} \ldots Q x_{1} \varphi(\vec{x}) \mid \varphi \in \Delta_{0}^{0}\right\}$ and
2. $\varphi \in \Delta_{0}^{0}$ iff all quantifiers in φ are bounded
(i.e., of the forms $\forall x<t$ and $\exists x<t$).

Theories containing Q

- PA extends Q by induction scheme:
$\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi(S(x)) \rightarrow \forall x \varphi(x)\right.$ for $\varphi \in L_{\mathbf{Q}}$.
- $\mathbf{I} \Sigma_{n}$ extends Q by induction for Σ_{n}^{0} formulae:

1. $\Sigma_{n}^{0}=\left\{\exists x_{n} \forall x_{n-1} \ldots Q x_{1} \varphi(\vec{x}) \mid \varphi \in \Delta_{0}^{0}\right\}$ and
2. $\varphi \in \Delta_{0}^{0}$ iff all quantifiers in φ are bounded
(i.e., of the forms $\forall x<t$ and $\exists x<t$).

- PRA extends Q by

1. $L_{\mathrm{PRA}}:=L_{\mathbf{Q}} \cup\{\underline{\mathcal{F}} \mid \mathcal{F} \in \operatorname{PrimRec}\} ;$
2. induction for quantifier-free $L_{\text {PRA }}$ formulae.

Theories containing Q

- PA extends Q by induction scheme:
$\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi(S(x)) \rightarrow \forall x \varphi(x)\right.$ for $\varphi \in L_{\mathbf{Q}}$.
- $\mathbf{I} \Sigma_{n}$ extends Q by induction for Σ_{n}^{0} formulae:

1. $\Sigma_{n}^{0}=\left\{\exists x_{n} \forall x_{n-1} \ldots Q x_{1} \varphi(\vec{x}) \mid \varphi \in \Delta_{0}^{0}\right\}$ and
2. $\varphi \in \Delta_{0}^{0}$ iff all quantifiers in φ are bounded
(i.e., of the forms $\forall x<t$ and $\exists x<t$).

- PRA extends Q by

1. $L_{\mathrm{PRA}}:=L_{\mathbf{Q}} \cup\{\underline{\mathcal{F}} \mid \mathcal{F} \in \operatorname{PrimRec}\} ;$
2. induction for quantifier-free $L_{\text {PRA }}$ formulae.

- ZFC extends Q ...

Theories containing Q

- PA extends Q by induction scheme:
$\varphi(0) \wedge \forall x\left(\varphi(x) \rightarrow \varphi(S(x)) \rightarrow \forall x \varphi(x)\right.$ for $\varphi \in L_{\mathbf{Q}}$.
- $\mathbf{I} \Sigma_{n}$ extends Q by induction for Σ_{n}^{0} formulae:

1. $\Sigma_{n}^{0}=\left\{\exists x_{n} \forall x_{n-1} \ldots Q x_{1} \varphi(\vec{x}) \mid \varphi \in \Delta_{0}^{0}\right\}$ and
2. $\varphi \in \Delta_{0}^{0}$ iff all quantifiers in φ are bounded
(i.e., of the forms $\forall x<t$ and $\exists x<t$).

- PRA extends Q by

1. $L_{\mathrm{PRA}}:=L_{\mathbf{Q}} \cup\{\underline{\mathcal{F}} \mid \mathcal{F} \in \operatorname{PrimRec}\} ;$
2. induction for quantifier-free L_{PRA} formulae.

- ZFC extends Q ... really? in which sense?

Interpretation

An interpretation I of L in L^{\prime} consists of:

- an L^{\prime} formula $v_{I}(x)$, called universe;
- for function $f(\vec{x})$ of L, an L^{\prime} formula $f^{I}(y, \vec{x})$;
- for relation $R(\vec{x})$ of L, an L^{\prime} formula $R^{I}(\vec{x})$.

Interpretation

An interpretation I of L in L^{\prime} consists of:

- an L^{\prime} formula $v_{I}(x)$, called universe;
- for function $f(\vec{x})$ of L, an L^{\prime} formula $f^{I}(y, \vec{x})$;
- for relation $R(\vec{x})$ of L, an L^{\prime} formula $R^{I}(\vec{x})$.

Extend I to all L-terms and L-formulae:

- if $t(\vec{x}) \equiv f\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then

$$
t^{I}(y, \vec{x}) \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}{ }^{I}\left(z_{i}, \vec{x}\right) \wedge f^{I}\left(y, z_{1}, . ., z_{n}\right)\right)
$$

Interpretation

An interpretation I of L in L^{\prime} consists of:

- an L^{\prime} formula $v_{I}(x)$, called universe;
- for function $f(\vec{x})$ of L, an L^{\prime} formula $f^{I}(y, \vec{x})$;
- for relation $R(\vec{x})$ of L, an L^{\prime} formula $R^{I}(\vec{x})$.

Extend I to all L-terms and L-formulae:

- if $t(\vec{x}) \equiv f\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then
$t^{I}(y, \vec{x}) \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}{ }^{I}\left(z_{i}, \vec{x}\right) \wedge f^{I}\left(y, z_{1}, . ., z_{n}\right)\right)$;
- if $\varphi \equiv R\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then

$$
\varphi^{I} \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}^{I}\left(z_{i}, \vec{x}\right) \wedge R^{I}\left(z_{1}, . ., z_{n}\right)\right) ;
$$

Interpretation

An interpretation I of L in L^{\prime} consists of:

- an L^{\prime} formula $v_{I}(x)$, called universe;
- for function $f(\vec{x})$ of L, an L^{\prime} formula $f^{I}(y, \vec{x})$;
- for relation $R(\vec{x})$ of L, an L^{\prime} formula $R^{I}(\vec{x})$.

Extend I to all L-terms and L-formulae:

- if $t(\vec{x}) \equiv f\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then
$t^{I}(y, \vec{x}) \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}{ }^{I}\left(z_{i}, \vec{x}\right) \wedge f^{I}\left(y, z_{1}, . ., z_{n}\right)\right)$;
- if $\varphi \equiv R\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then
$\varphi^{I} \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}^{I}\left(z_{i}, \vec{x}\right) \wedge R^{I}\left(z_{1}, . ., z_{n}\right)\right) ;$
- $(\varphi \wedge \psi)^{I} \equiv \varphi^{I} \wedge \psi^{I}$; and $(\neg \varphi)^{I} \equiv \neg \varphi^{I}$;

Interpretation

An interpretation I of L in L^{\prime} consists of:

- an L^{\prime} formula $v_{I}(x)$, called universe;
- for function $f(\vec{x})$ of L, an L^{\prime} formula $f^{I}(y, \vec{x})$;
- for relation $R(\vec{x})$ of L, an L^{\prime} formula $R^{I}(\vec{x})$.

Extend I to all L-terms and L-formulae:

- if $t(\vec{x}) \equiv f\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then
$t^{I}(y, \vec{x}) \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}{ }^{I}\left(z_{i}, \vec{x}\right) \wedge f^{I}\left(y, z_{1}, . ., z_{n}\right)\right)$;
- if $\varphi \equiv R\left(t_{1}(\vec{x}), \ldots, t_{k}(\vec{x})\right)$, then
$\varphi^{I} \equiv \exists z_{1}, \ldots, z_{k}\left(\bigwedge_{i \leq k} t_{i}^{I}\left(z_{i}, \vec{x}\right) \wedge R^{I}\left(z_{1}, . ., z_{n}\right)\right) ;$
- $(\varphi \wedge \psi)^{I} \equiv \varphi^{I} \wedge \psi^{I}$; and $(\neg \varphi)^{I} \equiv \neg \varphi^{I}$;
- $(\forall y \varphi(y))^{I} \equiv \forall y\left(v_{I}(y) \rightarrow \varphi(y)^{I}\right)$.

Interpretation 2

Given an interpretation I of L in L^{\prime}.

- I is an interpretation in an L^{\prime} theory T^{\prime} iff

1. $T^{\prime} \vdash \exists x v_{I}(x)$;
2. $T^{\prime} \vdash \forall \vec{x}\left(v_{I}(\vec{x}) \rightarrow \exists!y\left(v_{I}(y) \wedge f^{I}(y, \vec{x})\right)\right)$.

Interpretation 2

Given an interpretation I of L in L^{\prime}.

- I is an interpretation in an L^{\prime} theory T^{\prime} iff

1. $T^{\prime} \vdash \exists x v_{I}(x)$;
2. $T^{\prime} \vdash \forall \vec{x}\left(v_{I}(\vec{x}) \rightarrow \exists!y\left(v_{I}(y) \wedge f^{I}(y, \vec{x})\right)\right)$.

- I is an interpretation of an L theory T in T^{\prime} iff

1. (as above);
2. (as above);
3. if $T \vdash \varphi$ then $T^{\prime} \vdash \varphi^{I}$ for any $\varphi \in L$.

Theories ess. containing Q

" T^{\prime} ess. contains $T "={ }^{"} \exists$ interpretation of T in $T^{\prime \prime}$.

Theories ess. containing Q

" T^{\prime} ess. contains $T "=$ " \exists interpretation of T in $T^{\prime \prime}$.

- ZFC essentially contains Q by von Neumann interpretation v :

1. $v_{\mathrm{v}}(x) \equiv$ " x is a finite von Neumann ordinal";
2. $S^{\mathbf{v}}(y, x) \equiv y=x \cup\{x\}$, etc.;

Theories ess. containing Q

" T^{\prime} ess. contains $T "=" \exists$ interpretation of T in T " .

- ZFC essentially contains Q by von Neumann interpretation v:

1. $v_{\mathrm{v}}(x) \equiv$ " x is a finite von Neumann ordinal";
2. $S^{\mathfrak{v}}(y, x) \equiv y=x \cup\{x\}$, etc.;

- modal extensions of PA (directly) contains Q;

Theories ess. containing Q

" T^{\prime} ess. contains $T "=" \exists$ interpretation of T in $T^{\prime "}$.

- ZFC essentially contains Q by von Neumann interpretation v:

1. $v_{\mathrm{v}}(x) \equiv$ " x is a finite von Neumann ordinal";
2. $S^{\mathfrak{v}}(y, x) \equiv y=x \cup\{x\}$, etc.;

- modal extensions of PA (directly) contains Q;
- Heyting Arithmetic HA (ess.) contains Q by
- HA literally extends PA in \wedge, \neg, \forall, with extra-operators \vee, \exists (like modality);

Theories ess. containing Q

" T^{\prime} ess. contains $T "=" \exists$ interpretation of T in T " .

- ZFC essentially contains Q by von Neumann interpretation v:

1. $v_{\mathrm{v}}(x) \equiv$ " x is a finite von Neumann ordinal";
2. $S^{\mathbf{v}}(y, x) \equiv y=x \cup\{x\}$, etc.;

- modal extensions of PA (directly) contains Q;
- Heyting Arithmetic HA (ess.) contains Q by
- HA literally extends PA in \wedge, \neg, \forall, with extra-operators \vee, \exists (like modality);
- relaxing the notion of interpretation so that double negation translation N is included:

$$
(\varphi \vee \psi)^{N} \equiv \neg\left(\neg \varphi^{N} \wedge \neg \psi^{N}\right) ;(\exists x \varphi(x))^{N} \equiv \neg \forall x \neg \varphi(x)^{N} ; \text { etc. }
$$

Presburger Arithmetic PresA

Language $L_{\text {PresA }}=\{0, S,+\}$;
Axioms 1. $\neg(S(x)=0)$;
2. $S(x)=S(y) \rightarrow x=y$;
3. $x=0 \vee \exists y(x=S(y))$;
4. $x+0=x$; and $x+S(y)=S(x+y)$;
5. induction for all $L_{\text {PresA }}$ formulae.

Presburger Arithmetic PresA

Language $L_{\text {PresA }}=\{0, S,+\}$;
Axioms 1. $\neg(S(x)=0)$;
2. $S(x)=S(y) \rightarrow x=y$;
3. $x=0 \vee \exists y(x=S(y))$;
4. $x+0=x$; and $x+S(y)=S(x+y)$;
5. induction for all $L_{\text {PresA }}$ formulae.

Remarks

- essentially, the --free fragment of PA;

Presburger Arithmetic PresA

Language $L_{\text {PresA }}=\{0, S,+\}$;
Axioms 1. $\neg(S(x)=0)$;
2. $S(x)=S(y) \rightarrow x=y$;
3. $x=0 \vee \exists y(x=S(y))$;
4. $x+0=x$; and $x+S(y)=S(x+y)$;
5. induction for all $L_{\text {PresA }}$ formulae.

Remarks

- essentially, the --free fragment of PA;
- introduced by M. Presburger in 1929;

Presburger Arithmetic PresA

Language $L_{\text {PresA }}=\{0, S,+\}$;
Axioms 1. $\neg(S(x)=0)$;
2. $S(x)=S(y) \rightarrow x=y$;
3. $x=0 \vee \exists y(x=S(y))$;
4. $x+0=x$; and $x+S(y)=S(x+y)$;
5. induction for all $L_{\text {PresA }}$ formulae.

Remarks

- essentially, the --free fragment of PA;
- introduced by M. Presburger in 1929;
- proven by him to be complete, i.e., $\operatorname{PreA} \vdash \varphi \Longleftrightarrow \mathbb{N} \models \varphi$ for any $\varphi \in L_{\text {PresA }} ;$

Presburger Arithmetic PresA

Language $L_{\text {PresA }}=\{0, S,+\}$;
Axioms 1. $\neg(S(x)=0)$;
2. $S(x)=S(y) \rightarrow x=y$;
3. $x=0 \vee \exists y(x=S(y))$;
4. $x+0=x$; and $x+S(y)=S(x+y)$;
5. induction for all $L_{\text {PresA }}$ formulae.

Remarks

- essentially, the --free fragment of PA;
- introduced by M. Presburger in 1929;
- proven by him to be complete, i.e.,

$$
\operatorname{PreA} \vdash \varphi \Longleftrightarrow \mathbb{N} \models \varphi \text { for any } \varphi \in L_{\text {PresA }} ;
$$

- hence not essentially contains Q.

Theory of real closed fields RCF

Language $L_{\text {RCF }}:=\{0,1,-,+, \cdot,<\} ;$
Axioms 1. $x+0=x ; \quad x+(-x)=0 ; \quad x+y=y+x$;
2. $x \cdot 0=0 ; \quad x \cdot(y+z)=x \cdot y+x \cdot z ; \quad x \cdot y=y \cdot x$;
3. $x<y \rightarrow x+z<y+z ; \quad x>0 \wedge y>0 \rightarrow x \cdot y>0$;
4. $x>0 \rightarrow \exists y(x=y \cdot y)$;
5. $\forall x_{2 n+1} \ldots x_{0}\left(x_{2 n+1} \neq 0 \rightarrow \exists y\left(\sum_{i \leq 2 n+1} x_{i} \cdot y^{i}=0\right)\right)$.

Theory of real closed fields RCF

Language $L_{\mathbf{R C F}}:=\{0,1,-,+, \cdot,<\} ;$
Axioms 1. $x+0=x ; \quad x+(-x)=0 ; \quad x+y=y+x$;
2. $x \cdot 0=0 ; \quad x \cdot(y+z)=x \cdot y+x \cdot z ; \quad x \cdot y=y \cdot x$;
3. $x<y \rightarrow x+z<y+z ; \quad x>0 \wedge y>0 \rightarrow x \cdot y>0$;
4. $x>0 \rightarrow \exists y(x=y \cdot y)$;
5. $\forall x_{2 n+1} \ldots x_{0}\left(x_{2 n+1} \neq 0 \rightarrow \exists y\left(\sum_{i \leq 2 n+1} x_{i} \cdot y^{i}=0\right)\right)$.

Remarks

- proven by Tarski (1951) to admit quantifier-elimination; and so
- $\mathrm{RFC} \vdash \varphi \Longleftrightarrow(\mathbb{R}, 0,1,-,+, \cdot,<) \models \varphi$;

Theory of real closed fields RCF

Language $L_{\mathbf{R C F}}:=\{0,1,-,+, \cdot,<\} ;$
Axioms 1. $x+0=x ; \quad x+(-x)=0 ; \quad x+y=y+x$;
2. $x \cdot 0=0 ; \quad x \cdot(y+z)=x \cdot y+x \cdot z ; \quad x \cdot y=y \cdot x$;
3. $x<y \rightarrow x+z<y+z ; \quad x>0 \wedge y>0 \rightarrow x \cdot y>0$;
4. $x>0 \rightarrow \exists y(x=y \cdot y)$;
5. $\forall x_{2 n+1} \ldots x_{0}\left(x_{2 n+1} \neq 0 \rightarrow \exists y\left(\sum_{i \leq 2 n+1} x_{i} \cdot y^{i}=0\right)\right)$.

Remarks

- proven by Tarski (1951) to admit quantifier-elimination; and so
- $\operatorname{RFC} \vdash \varphi \Longleftrightarrow(\mathbb{R}, 0,1,-,+, \cdot,<) \models \varphi$;
- hence not essentially contains Q.

Quiz 2 - Which is correct?

- Hilbert's Programme looks for: a complete and decidable axiomatization of real numbers.
Gödel Incompleteness Theorem answers: "impossible".
- Tarski's Theorem (1951):
quantifier elimination of real closed field.
As a consequence, it yields:
a complete and decidable axiomatization of $(\mathbb{R}, 0,1,-,+, \cdot,<)$.

The Statement (5)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete;

The Statement (5)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete;
2nd incompleteness: T cannot prove a sentence which represents the consistency of T.

Nelson's trick

There is an interpretation of $\mathrm{I} \Sigma_{0}+\Omega_{1}$ in Q .

- Main idea: define an $L_{\mathbf{Q}}$ formula $W(x)$ which intuitively means " $<$ is well-founded below x ";

Nelson's trick

There is an interpretation of $I \Sigma_{0}+\Omega_{1}$ in Q .

- Main idea: define an $L_{\mathbf{Q}}$ formula $W(x)$ which intuitively means " $<$ is well-founded below x ";
- Nelson's interpretation \mathbf{n} should be

$$
\begin{aligned}
& \text { 1. } v_{\mathrm{n}}(x) \equiv W(x) \text {; } \\
& \text { 2. } S^{\mathrm{n}}(y, x) \equiv y=S(x) \text {; } \\
& +^{\mathrm{n}}(z, x, y) \equiv z=x+y ;{ }^{\mathrm{n}}(z, x, y) \equiv z=x \cdot y \text {. } \\
& \text { 3. }=^{\mathrm{n}}(x, y) \equiv x=y ; \quad<^{\mathrm{n}}(x, y) \equiv x<y \text {. }
\end{aligned}
$$

Nelson's trick

There is an interpretation of $\mathrm{I} \Sigma_{0}+\Omega_{1}$ in Q.

- Main idea: define an $L_{\mathbf{Q}}$ formula $W(x)$ which intuitively means " $<$ is well-founded below x ";
- Nelson's interpretation \mathbf{n} should be

$$
\begin{aligned}
& \text { 1. } v_{\mathrm{n}}(x) \equiv W(x) \text {; } \\
& \text { 2. } S^{\mathrm{n}}(y, x) \equiv y=S(x) ; \\
& +^{\mathrm{n}}(z, x, y) \equiv z=x+y ;{ }^{\mathrm{n}}(z, x, y) \equiv z=x \cdot y . \\
& \text { 3. }=^{\mathrm{n}}(x, y) \equiv x=y ; \quad<^{\mathrm{n}}(x, y) \equiv x<y \text {. }
\end{aligned}
$$

- Compare to $\varphi \mapsto \varphi^{\mathrm{WF}}$ in set theory.

Nelson's trick

There is an interpretation of $I \Sigma_{0}+\Omega_{1}$ in Q .

- Main idea: define an $L_{\mathbf{Q}}$ formula $W(x)$ which intuitively means " $<$ is well-founded below x ";
- Nelson's interpretation \mathbf{n} should be

$$
\begin{aligned}
& \text { 1. } v_{\mathrm{n}}(x) \equiv W(x) \text {; } \\
& \text { 2. } S^{\mathbf{n}}(y, x) \equiv y=S(x) ; \\
& +^{\mathbf{n}}(z, x, y) \equiv z=x+y ;{ }^{\mathbf{n}}(z, x, y) \equiv z=x \cdot y . \\
& \text { 3. }=^{\mathrm{n}}(x, y) \equiv x=y ; \quad<^{\mathbf{n}}(x, y) \equiv x<y \text {. }
\end{aligned}
$$

- Compare to $\varphi \mapsto \varphi^{\mathrm{WF}}$ in set theory.

As a consequence,
$" T$ ess. contains $\mathbf{Q} " \Longleftrightarrow " T$ ess. contains $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1_{-2} "}{ }^{"}$

Numeralwise representation

$R \subseteq \omega^{n}$ is numeralwise represented by $\varphi(\vec{x})$ iff

- $\mathrm{Q} \vdash \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow R\left(k_{1}, \ldots, k_{n}\right)$ and
- $\mathrm{Q} \vdash \neg \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow \neg R\left(k_{1}, \ldots, k_{n}\right)$,
where $\bar{k}:=\underbrace{S(\ldots(S}_{k}(0) \ldots)$.

Numeralwise representation

$R \subseteq \omega^{n}$ is numeralwise represented by $\varphi(\vec{x})$ iff

- $\mathbf{Q} \vdash \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow R\left(k_{1}, \ldots, k_{n}\right)$ and
- $\mathrm{Q} \vdash \neg \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow \neg R\left(k_{1}, \ldots, k_{n}\right)$, where $\bar{k}:=\underbrace{S(\ldots(S}_{k}(0) \ldots)$.
We have the following $L_{\mathbf{Q}}$ formulae (Σ_{1}^{0} completeness):
- $\mathrm{Q} \vdash \operatorname{neg}(\overline{\Gamma \varphi}, \bar{k}) \Longleftrightarrow k=\ulcorner\neg \varphi\urcorner$ and
$\mathrm{Q} \vdash \neg \operatorname{neg}\left(\bar{\Gamma} \varphi^{\top}, \bar{k}\right) \Longleftrightarrow k \neq\ulcorner\neg \varphi ;$

Numeralwise representation

$R \subseteq \omega^{n}$ is numeralwise represented by $\varphi(\vec{x})$ iff

- $\mathbf{Q} \vdash \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow R\left(k_{1}, \ldots, k_{n}\right)$ and
- $\mathrm{Q} \vdash \neg \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow \neg R\left(k_{1}, \ldots, k_{n}\right)$, where $\bar{k}:=\underbrace{S(\ldots(S}_{k}(0) \ldots)$.
We have the following $L_{\mathbf{Q}}$ formulae (Σ_{1}^{0} completeness):
- $\mathrm{Q} \vdash \operatorname{neg}(\overline{\Gamma \varphi}, \bar{k}) \Longleftrightarrow k=\ulcorner\neg \varphi\urcorner$ and
$\mathrm{Q} \vdash \neg \operatorname{neg}\left(\bar{\Gamma} \varphi^{\top}, \bar{k}\right) \Longleftrightarrow k \neq\ulcorner\neg \varphi$;
- $\mathbf{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\left\ulcorner\varphi^{7}\right.}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ
$\mathbf{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\bar{\Gamma} \overline{ }, \bar{\Gamma} \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ (if T is recursively axiomatizable).

Numeralwise representation

$R \subseteq \omega^{n}$ is numeralwise represented by $\varphi(\vec{x})$ iff

- $\mathbf{Q} \vdash \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow R\left(k_{1}, \ldots, k_{n}\right)$ and
- $\mathrm{Q} \vdash \neg \varphi\left(\overline{k_{1}}, \ldots, \overline{k_{n}}\right) \Longleftrightarrow \neg R\left(k_{1}, \ldots, k_{n}\right)$, where $\bar{k}:=\underbrace{S(\ldots(S}_{k}(0) \ldots)$.
We have the following $L_{\mathbf{Q}}$ formulae (Σ_{1}^{0} completeness):
- $\mathrm{Q} \vdash \operatorname{neg}(\overline{\ulcorner\varphi}, \bar{k}) \Longleftrightarrow k=\ulcorner\neg \varphi\urcorner$ and
$\mathrm{Q} \vdash \neg \operatorname{neg}\left(\bar{\Gamma} \varphi^{\top}, \bar{k}\right) \Longleftrightarrow k \neq\ulcorner\neg \varphi$;
- $\mathbf{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ
$\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\bar{\Pi},}, \overline{\varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ
(if T is recursively axiomatizable).
Then it is natural to define

$$
\operatorname{Con}(T): \equiv \neg \exists x \operatorname{Prf}_{T}(x, \overline{\Gamma \perp\urcorner})
$$

Ambiguity

Even if the following hold for all Λ and φ :

- $\mathbf{Q} \vdash \operatorname{Prf}_{T}(\overline{\Gamma \overline{ }, ~} \overline{\Gamma \bar{\varphi}}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda}, \overline{\ulcorner\bar{\varphi}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
- $\mathrm{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\Gamma \overline{\urcorner}}, \overline{\Gamma \bar{\varphi}}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\left\ulcorner\varphi^{\urcorner}\right.}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ;

Ambiguity

Even if the following hold for all Λ and φ :

- $\mathbf{Q} \vdash \operatorname{Prf}_{T}(\overline{\Gamma \overline{ }, ~} \overline{\Gamma \bar{\varphi}}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda}, \overline{\ulcorner\bar{\varphi}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
- $\mathbf{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\Gamma \overline{\urcorner}}, \overline{\Gamma \bar{\varphi}}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\left\ulcorner\varphi^{\top}\right.}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
we do not have
- $\mathrm{Q} \vdash \forall x, y\left(\operatorname{Prf}_{T}(x, y) \leftrightarrow \operatorname{Prf}_{T}^{*}(x, y)\right)$, nor

Ambiguity

Even if the following hold for all Λ and φ :

- $\mathbf{Q} \vdash \operatorname{Prf}_{T}(\overline{\Gamma \overline{ },}, \bar{\Gamma} \bar{\varphi}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda}, \overline{\ulcorner\bar{\varphi}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
- $\mathbf{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\bar{\Lambda}, ~} \overline{\Gamma \bar{\varphi}}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\left\ulcorner\varphi^{\urcorner}\right.}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
we do not have
- $\mathrm{Q} \vdash \forall x, y\left(\operatorname{Prf}_{T}(x, y) \leftrightarrow \operatorname{Prf}_{T}^{*}(x, y)\right)$, nor
- $\mathbf{Q} \vdash \operatorname{Con}(T) \leftrightarrow \operatorname{Con}^{*}(T)$,
where $\operatorname{Con}^{*}(T): \equiv \neg \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\left\ulcorner\perp^{\top}\right) \text {. }}\right.$

Ambiguity

Even if the following hold for all Λ and φ :

- $\mathbf{Q} \vdash \operatorname{Prf}_{T}(\overline{\bar{\Lambda},}, \bar{\Gamma} \bar{\varphi}) \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda}, \overline{\ulcorner\bar{\varphi}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
- $\mathbf{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\bar{\Lambda}, \bar{\Gamma} \bar{\varphi})} \Longleftrightarrow \Lambda$ is a T-proof of φ and $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\Lambda\urcorner}, \overline{\ulcorner\bar{\varphi}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ;
we do not have
- $\mathbf{Q} \vdash \forall x, y\left(\operatorname{Prf}_{T}(x, y) \leftrightarrow \operatorname{Prf}_{T}^{*}(x, y)\right)$, nor
- $\mathrm{Q} \vdash \operatorname{Con}(T) \leftrightarrow \operatorname{Con}^{*}(T)$,
where $\operatorname{Con}^{*}(T): \equiv \neg \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\left\ulcorner\perp^{\top}\right.}\right)$.
The point here:
$T \vdash \varphi(\bar{k})$ for all $k \in \omega \nRightarrow T \vdash \forall x \varphi(x)$.

Quiz 3 - Which is correct?

- Gödel 2nd Incompleteness (1931):

PA cannot prove a sentence which represents the consistency of PA.

- Kreisel's Remark (1960):

PA does prove a sentence which represents the consistency of PA.
2. A Brief Look at the Proofs

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ,

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathbf{Q} \vdash \neg \operatorname{Prf}_{T}(\overline{\Gamma \Lambda\urcorner}, \overline{\ulcorner\bar{\top}}) \Longleftrightarrow \Lambda$ is not a T-proof of φ, we can define $\operatorname{Prf}_{T}^{*}$ by

$$
\begin{aligned}
\operatorname{Prf}_{T}^{*}(x, u): \equiv & \operatorname{Prf}(x, u) \wedge \\
& (\forall z<x) \forall v \neg(\operatorname{neg}(u, v) \wedge \operatorname{Prf}(z, v)) .
\end{aligned}
$$

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ, we can define $\operatorname{Prf}_{T}^{*}$ by

$$
\operatorname{Prf}_{T}^{*}(x, u): \equiv \operatorname{Prf}(x, u) \wedge
$$

$$
(\forall z<x) \forall v \neg(\operatorname{neg}(u, v) \wedge \operatorname{Prf}(z, v)) .
$$

Then

$\mathrm{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\bar{\Pi} \overline{ }}, \overline{\Gamma \bar{\varphi}})$
$\Longleftrightarrow \Lambda$ is a T-proof of $\varphi \wedge$ there is no T-proof Δ of $\neg \varphi$ with $\ulcorner\Delta\urcorner<\ulcorner\Lambda\urcorner$
$\Longrightarrow \Lambda$ is a T-proof of φ.

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ, we can define $\operatorname{Prf}_{T}^{*}$ by

$$
\operatorname{Prf}_{T}^{*}(x, u): \equiv \operatorname{Prf}(x, u) \wedge
$$

$$
(\forall z<x) \forall v \neg(\operatorname{neg}(u, v) \wedge \operatorname{Prf}(z, v)) .
$$

Then
$\mathrm{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\Lambda \overline{\urcorner}}, \overline{\ulcorner\varphi}) \Longleftrightarrow \Lambda$ is a T-proof of $\varphi \wedge$ there is no T-proof Δ of $\neg \varphi$ with $\ulcorner\Delta\urcorner<\ulcorner\Lambda\urcorner$
$\Longrightarrow \Lambda$ is a T-proof of φ.
If T is consistent, \Longleftarrow also holds.

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ, we can define $\operatorname{Prf}_{T}^{*}$ by

$$
\operatorname{Prf}_{T}^{*}(x, u): \equiv \operatorname{Prf}(x, u) \wedge
$$

$$
(\forall z<x) \forall v \neg(\operatorname{neg}(u, v) \wedge \operatorname{Prf}(z, v)) .
$$

Then
$\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\Lambda\urcorner}, \overline{\ulcorner\varphi}) \Longleftrightarrow \Lambda$ is not a T-proof of $\varphi \vee$ there is a T-proof Δ of $\neg \varphi$ with $\ulcorner\Delta\urcorner<\ulcorner\Lambda\urcorner$
$\Longleftarrow \Lambda$ is not a T-proof of φ.

Rosser's trick

Given Prf_{T} such that, for all Λ and φ,

- $\mathrm{Q} \vdash \operatorname{Prf}_{T}\left(\overline{\Gamma \Lambda}, \overline{\Gamma \varphi^{7}}\right) \Longleftrightarrow \Lambda$ is a T-proof of φ,
- $\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}\left(\overline{\ulcorner\Lambda\urcorner}, \overline{\Gamma \varphi^{\top}}\right) \Longleftrightarrow \Lambda$ is not a T-proof of φ, we can define $\operatorname{Prf}_{T}^{*}$ by

$$
\operatorname{Prf}_{T}^{*}(x, u): \equiv \operatorname{Prf}(x, u) \wedge
$$

$$
(\forall z<x) \forall v \neg(\operatorname{neg}(u, v) \wedge \operatorname{Prf}(z, v)) .
$$

Then
$\mathrm{Q} \vdash \neg \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\overline{ }}, \overline{\Gamma \varphi}) \Longleftrightarrow \Lambda$ is not a T-proof of $\varphi \vee$ there is a T-proof Δ of $\neg \varphi$ with $\ulcorner\Delta\urcorner<\ulcorner\Lambda\urcorner$
$\Longleftarrow \Lambda$ is not a T-proof of φ.
If T is consistent,\Longrightarrow also holds.

Kreisel's remark (1960)

Since there is a proof Δ of $\neg \perp$, if T is consistent,

$$
\mathbf{Q} \vdash(\forall x<\overline{\Gamma \Delta\rceil}) \neg \operatorname{Prf}(x, \overline{\Gamma \perp \bar{\top}}) .
$$

Kreisel's remark (1960)

Since there is a proof Δ of $\neg \perp$, if T is consistent,

$$
\mathbf{Q} \vdash(\forall x<\overline{\ulcorner\Delta\urcorner}) \neg \operatorname{Prf}(x, \overline{\ulcorner\perp\urcorner}) .
$$

Hence, Q proves

$$
\begin{aligned}
\operatorname{Prf}_{T}^{*}(x, \overline{\Gamma \perp \overline{\urcorner}}) \equiv & \operatorname{Prf}_{T}(x, \overline{\ulcorner\perp \overline{7}}) \wedge \\
& (\forall z<x) \forall v \neg\left(\overline{\left.\operatorname{neg}(\overline{\Gamma \perp\urcorner}, v) \wedge \operatorname{Prf}_{T}(z, v)\right)}\right. \\
\rightarrow & \forall v \neg\left(\operatorname{neg}(\overline{\Gamma \perp\urcorner}, v) \wedge \operatorname{Prf}_{T}(\overline{\Gamma \Delta\urcorner}, v)\right) \\
\leftrightarrow & \rightarrow \neg \operatorname{Prf}_{T}(\overline{\Gamma \Delta\urcorner}, \overline{\ulcorner\neg \perp\urcorner}) \\
\rightarrow & \perp .
\end{aligned}
$$

Kreisel's remark (1960)

Since there is a proof Δ of $\neg \perp$, if T is consistent,

$$
\mathbf{Q} \vdash(\forall x<\overline{\ulcorner\Delta\urcorner}) \neg \operatorname{Prf}(x, \overline{\ulcorner\perp\urcorner}) .
$$

Hence, Q proves

$$
\begin{aligned}
\operatorname{Prf}_{T}^{*}(x, \overline{\ulcorner\perp \overline{\urcorner}}) \equiv & \operatorname{Prf}_{T}(x, \overline{\ulcorner\perp\urcorner}) \wedge \\
& (\forall z<x) \forall v \neg\left(\operatorname{neg}(\overline{\Gamma \perp\urcorner}, v) \wedge \operatorname{Prf}_{T}(z, v)\right) \\
\rightarrow & \forall v \neg\left(\operatorname{neg}(\overline{\Gamma \perp\urcorner}, v) \wedge \operatorname{Prf}_{T}(\overline{\Gamma \Delta\urcorner}, v)\right) \\
\leftrightarrow & \rightarrow \neg \operatorname{Prf}_{T}(\overline{\Gamma \Delta\urcorner}, \overline{\ulcorner\neg \perp\urcorner}) \\
\rightarrow & \rightarrow \perp .
\end{aligned}
$$

For any consistent recursively axiomatizable T,

$$
\mathrm{Q} \vdash \operatorname{Con}^{*}(T) .
$$

The Statement (6)

If a first order theory T satisfies the following:

- T is consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete;
2nd incompleteness: T cannot prove a sentence which represents the consistency of T.

Gödel's result

If a first order theory T satisfies the following:

- T is ω-consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete;
2nd incompleteness: T cannot prove a sentence which represents the consistency of T.

Gödel's result

If a first order theory T satisfies the following:

- T is ω-consistent;
- T is recursively axiomatizable;
- T essentially contains Robinson Arithmetic Q,
then the following hold:
1st incompleteness: T is not complete;
2nd incompleteness: T cannot prove a sentence which represents the consistency of T.
T is called ω-consistent iff there is no $\varphi(x) \in L_{T}$ s.t.
- $T \vdash \neg \varphi(\bar{k})$ for all $k \in \omega$;
- $T \vdash \exists x \varphi(x)$.

Gödel's Self-reference Lemma

Lemma For any $\varphi(x) \in L_{\mathbf{Q}}$, there is a $L_{\mathbf{Q}}$ sentence θ s.t.

$$
\mathrm{Q} \vdash \theta \leftrightarrow \varphi(\overline{\Gamma \theta \overline{7}}) .
$$

Gödel's Self-reference Lemma

Lemma For any $\varphi(x) \in L_{\mathbf{Q}}$, there is a $L_{\mathbf{Q}}$ sentence θ s.t.

$$
\mathbf{Q} \vdash \theta \leftrightarrow \varphi\left(\overline{\Gamma^{7}}\right) .
$$

(proof) Take $\operatorname{Subst}(u, y, v)$ such that

- $\mathbf{Q} \vdash \neg \operatorname{Subst}(\overline{\ulcorner\tau(x)} \overline{\bar{r}}, \overline{\bar{t}}, \bar{k}) \Longleftrightarrow k \neq\ulcorner\tau(t)\urcorner$;

Gödel's Self-reference Lemma

Lemma For any $\varphi(x) \in L_{\mathbf{Q}}$, there is a $L_{\mathbf{Q}}$ sentence θ s.t.

$$
\mathbf{Q} \vdash \theta \leftrightarrow \varphi\left(\overline{\Gamma^{7}}\right) .
$$

(proof) Take $\operatorname{Subst}(u, y, v)$ such that

- $\mathbf{Q} \vdash \neg \operatorname{Subst}(\overline{\ulcorner\tau(x)} \overline{\urcorner}, \bar{\tau}, \bar{k}) \Longleftrightarrow k \neq\ulcorner\tau(t)\urcorner$;

Let $\rho(x): \equiv \exists u(\operatorname{Subst}(x, \overline{\ulcorner x\urcorner}, u) \wedge \varphi(u))$.

Gödel's Self-reference Lemma

Lemma For any $\varphi(x) \in L_{\mathbf{Q}}$, there is a $L_{\mathbf{Q}}$ sentence θ s.t.

$$
\mathbf{Q} \vdash \theta \leftrightarrow \varphi\left(\overline{\Gamma^{7}}\right) .
$$

(proof) Take $\operatorname{Subst}(u, y, v)$ such that

- $\mathbf{Q} \vdash \neg \operatorname{Subst}(\overline{\ulcorner\tau(x)} \overline{\urcorner}, \bar{\tau}, \bar{k}) \Longleftrightarrow k \neq\ulcorner\tau(t)\urcorner$;

Let $\rho(x): \equiv \exists u(\operatorname{Subst}(x, \overline{\ulcorner x\urcorner}, u) \wedge \varphi(u))$.
For any $\tau(x)$,

$$
\mathbf{Q} \vdash \rho(\overline{\ulcorner\tau(x) \overline{7}}) \leftrightarrow \varphi(\overline{\ulcorner\tau(\overline{\ulcorner\tau(x)\urcorner})\urcorner}) .
$$

Gödel's Self-reference Lemma

Lemma For any $\varphi(x) \in L_{\mathbf{Q}}$, there is a $L_{\mathbf{Q}}$ sentence θ s.t.

$$
\mathbf{Q} \vdash \theta \leftrightarrow \varphi\left(\overline{\Gamma^{7}}\right) .
$$

(proof) Take $\operatorname{Subst}(u, y, v)$ such that

- $\mathbf{Q} \vdash \operatorname{Subst}(\overline{\ulcorner\tau(x) \overline{ }}, \overline{\ulcorner\bar{t}}, \bar{k}) \Longleftrightarrow k=\ulcorner\tau(t)\urcorner$;
- $\mathbf{Q} \vdash \neg \operatorname{Subst}(\overline{\ulcorner\tau(x)} \overline{\urcorner}, \bar{\tau}, \bar{k}) \Longleftrightarrow k \neq\ulcorner\tau(t)\urcorner$;

Let $\rho(x): \equiv \exists u(\operatorname{Subst}(x, \overline{\ulcorner x\urcorner}, u) \wedge \varphi(u))$.
For any $\tau(x)$,

$$
\mathbf{Q} \vdash \rho(\overline{\ulcorner\tau(x) \overline{7}}) \leftrightarrow \varphi(\overline{\ulcorner\tau(\overline{\ulcorner\tau(x) \overline{7}})}) .
$$

Letting $\tau(x) \equiv \rho(x)$ and $\theta \equiv \rho\left(\overline{\Gamma \rho(x))^{7}}\right)$, we have

$$
\mathbf{Q} \vdash \rho(\overline{\Gamma \rho(x) \overline{7}}) \leftrightarrow \varphi(\overline{\Gamma \rho(\overline{\ulcorner\rho(x)\rceil})}) .
$$

Gödel's 1st incompleteness

Theorem If T is ω-consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.

Gödel's 1st incompleteness

Theorem If T is ω-consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.
(Proof) By self-reference lemma, we have σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow \neg \exists x \operatorname{Prf}_{T}\left(x, \overline{\Gamma^{\top}}\right) .
$$

Gödel's 1st incompleteness

Theorem If T is ω-consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.
(Proof) By self-reference lemma, we have σ s.t.

$$
\mathbf{Q} \vdash \sigma \leftrightarrow \neg \exists x \operatorname{Prf}_{T}\left(x, \overline{\Gamma_{\overline{7}}}\right) .
$$

Suppose $T \vdash \sigma$. There is a T-proof Λ of σ.
Then Q $\vdash \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda \overline{\urcorner}}, \overline{\ulcorner\sigma})$, and Q $\vdash \exists x \operatorname{Prf}_{T}(x, \overline{\ulcorner\sigma\urcorner})$.
Thus $\mathbf{Q} \vdash \neg \sigma$, contradicting the consistency of T.

Gödel's 1st incompleteness

Theorem If T is ω-consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.
(Proof) By self-reference lemma, we have σ s.t.

$$
\mathbf{Q} \vdash \sigma \leftrightarrow \neg \exists x \operatorname{Prf}_{T}\left(x, \overline{\sigma_{\overline{7}}}\right) .
$$

Suppose $T \vdash \sigma$. There is a T-proof Λ of σ. Then Q $\vdash \operatorname{Prf}_{T}(\overline{\ulcorner\Lambda \overline{\urcorner}}, \overline{\ulcorner\sigma})$, and Q $\vdash \exists x \operatorname{Prf}_{T}\left(x, \overline{\left\ulcorner\sigma^{\urcorner}\right.}\right)$. Thus $\mathbf{Q} \vdash \neg \sigma$, contradicting the consistency of T.

Suppose $T \vdash \neg \sigma$. Then $T \nvdash \sigma$ by consistency.
Thus $\mathbf{Q} \vdash \neg \operatorname{Prf}_{T}\left(\bar{k}, \overline{\ulcorner } \sigma^{\urcorner}\right)$for all $k \in \omega$.
However, $T \vdash \exists x \operatorname{Prf}_{T}\left(x, \overline{\left\ulcorner\sigma^{\urcorner}\right.}\right)$, and so T is ω-inconsistent.

Rosser's enhancement

Theorem If T is consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.
(Proof) By self-reference lemma, we have σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow \neg \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\sigma_{\overline{7}}}\right) .
$$

Suppose $T \vdash \sigma$. There is a T-proof Λ of σ. Then Q $\vdash \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\Lambda\urcorner}, \overline{\ulcorner\sigma})$, and $\mathbf{Q} \vdash \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\left\ulcorner\sigma^{\urcorner}\right.}\right)$. Thus $\mathbf{Q} \vdash \neg \sigma$, contradicting the consistency of T.

Rosser's enhancement

Theorem If T is consistent, ...(omitted)..., then there is $\sigma \in L_{\mathbf{Q}}$ s.t. $T \nvdash \sigma$ and $T \nvdash \neg \sigma$.
(Proof) By self-reference lemma, we have σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow \neg \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\Gamma^{\sigma}}\right) .
$$

Suppose $T \vdash \sigma$. There is a T-proof Λ of σ. Then $\mathbf{Q} \vdash \operatorname{Prf}_{T}^{*}(\overline{\ulcorner\Lambda}, \overline{\ulcorner } \bar{\sigma})$, and $\mathbf{Q} \vdash \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\left\ulcorner\sigma^{\top}\right.}\right)$. Thus $\mathbf{Q} \vdash \neg \sigma$, contradicting the consistency of T.

Suppose $T \vdash \neg \sigma$. So $\mathbf{Q} \vdash \operatorname{Prf}_{T}^{*}\left(\overline{\Gamma \Delta}, \overline{\Gamma \neg \sigma^{7}}\right)$ for some Δ. Since T is consistent, $\mathbf{Q} \vdash(\forall x<\overline{\overline{\Delta \top}}) \neg \operatorname{Prf}_{T}\left(x, \overline{\left\ulcorner\sigma^{7}\right.}\right)$.
But $T \vdash \exists x \operatorname{Prf}_{T}^{*}\left(x, \overline{\Gamma_{\sigma}}\right)$, i.e.,
$T \vdash \exists x\left(\operatorname{Prf}_{T}\left(x, \overline{\Gamma_{\sigma} \overline{7}}\right) \wedge(\forall y<x) \neg \operatorname{Prf}_{T}\left(y, \overline{\overline{ } \neg \sigma^{7}}\right)\right)$.

A dilemma

- To obtain the incompleteness without ω-consistency but only consistency, the key is Rosser's modification $\operatorname{Prf}_{T}^{*}$ for representing the notion "... is a proof of ...";

A dilemma

- To obtain the incompleteness without ω-consistency but only consistency, the key is Rosser's modification $\operatorname{Prf}_{T}^{*}$ for representing the notion "... is a proof of ...";
- but the corresponding consistency statement $\operatorname{Con}^{*}(T)$ is provable even in Q and hence in T.

Loeb's derivability conditions

A "canonicality" on $\mathrm{P}_{T}(u) \equiv \exists x \operatorname{Prf}_{T}(x, u)$:
(1) If $T \vdash \varphi$ then $\mathrm{Q} \vdash \mathrm{P}_{T}\left(\overline{\Gamma \varphi^{\top}}\right)$;
(2) $\mathrm{I} \boldsymbol{\Sigma}_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \rightarrow \psi}) \rightarrow\left(\mathrm{P}_{T}(\overline{\Gamma \varphi \overline{\urcorner}}) \rightarrow \mathrm{P}_{\mathrm{v}}(\overline{\ulcorner\psi\urcorner})\right)$

Loeb's derivability conditions

A "canonicality" on $\mathrm{P}_{\mathrm{v}}(u) \equiv \exists x \operatorname{Prf}_{T}(x, u)$:
(1) If $T \vdash \varphi$ then $\mathrm{Q} \vdash \mathrm{P}_{T}(\overline{\Gamma \varphi})$;
(2) $\mathrm{I} \boldsymbol{\Sigma}_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}_{T}}(\overline{\ulcorner\varphi \rightarrow \psi \overline{\urcorner}}) \rightarrow\left(\mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \overline{\urcorner}}) \rightarrow \mathrm{P}_{\mathrm{v}_{T}}(\overline{\ulcorner\psi \overline{\urcorner}})\right)$
(3) $\left.\mathrm{I} \boldsymbol{\Sigma}_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}\left(\overline{\Gamma \varphi^{\overline{7}}}\right) \rightarrow \mathrm{P}_{\mathrm{v}}\left(\overline{\left\ulcorner\mathrm{P}_{\mathrm{v}}\left(\overline{\Gamma \varphi^{7}}\right)\right.}\right)^{2}\right)$.

These conditions imply $T \nvdash \neg \mathrm{P}_{T}(\overline{\Gamma \perp})$.

Loeb's derivability conditions

A "canonicality" on $\mathrm{Pv}_{T}(u) \equiv \exists x \operatorname{Prf}_{T}(x, u)$:
(1) If $T \vdash \varphi$ then $\mathrm{Q} \vdash \mathrm{P}_{T}(\overline{\Gamma \varphi})$;
(2) $\mathrm{I} \Sigma_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \rightarrow \psi \overline{ }}) \rightarrow\left(\mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \overline{\urcorner}}) \rightarrow \mathrm{P}_{\mathrm{v}_{T}}(\overline{\ulcorner\psi\urcorner})\right)$
(3) $\mathbf{I} \boldsymbol{\Sigma}_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}\left(\overline{\Gamma \varphi^{\overline{7}}}\right) \rightarrow \mathrm{Pv}_{T}\left(\overline{\left\ulcorner\mathrm{P}_{\mathrm{v}}\left(\overline{\left.\Gamma \varphi^{\overline{ }}\right)}\right) \text {. }\right.}\right.$

These conditions imply $T \nvdash \neg \mathrm{P}_{T}(\overline{\Gamma \perp})$.
(Proof) Self-reference Lemma yields σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow\left(\mathrm{P}_{\mathrm{v}}(\bar{\Gamma} \bar{\sigma}) \rightarrow \perp\right) .
$$

Loeb's derivability conditions

A "canonicality" on $\mathrm{Pv}_{T}(u) \equiv \exists x \operatorname{Prf}_{T}(x, u)$:
(1) If $T \vdash \varphi$ then $\mathrm{Q} \vdash \mathrm{P}_{T}(\overline{\Gamma \varphi})$;
(2) $\mathrm{I} \Sigma_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \rightarrow \psi \overline{ }}) \rightarrow\left(\mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \overline{\urcorner}}) \rightarrow \mathrm{P}_{\mathrm{v}_{T}}(\overline{\ulcorner\psi\urcorner})\right)$

These conditions imply $T \nvdash \neg \mathrm{P}_{T}(\overline{\Gamma \perp})$.
(Proof) Self-reference Lemma yields σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow\left(\mathrm{P}_{\mathrm{v}_{T}}\left(\overline{\Gamma \sigma^{\top}}\right) \rightarrow \perp\right) .
$$

Then the conditions (1) and (2) yield
$\mathbf{I}_{0}+\mathbf{\Omega}_{1} \vdash \mathrm{P}_{\mathrm{v}_{T}}(\overline{(\bar{\sigma} \overline{\urcorner}}) \rightarrow\left(\mathrm{P}_{T}\left(\overline{\left\ulcorner\mathrm{P}_{T}(\overline{\bar{\sigma} \overline{\urcorner}})\right\urcorner}\right) \rightarrow \mathrm{P}_{T}(\overline{\Gamma \perp\urcorner})\right)$.

Loeb's derivability conditions

A "canonicality" on $\operatorname{Pv}_{T}(u) \equiv \exists x \operatorname{Prf}_{T}(x, u)$:
(1) If $T \vdash \varphi$ then $\mathrm{Q} \vdash \mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi})$;
(2) $\mathrm{I} \Sigma_{0}+\Omega_{1} \vdash \mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \rightarrow \psi \overline{ }}) \rightarrow\left(\mathrm{P}_{\mathrm{v}}(\overline{\Gamma \varphi \overline{\urcorner}}) \rightarrow \mathrm{P}_{\mathrm{v}_{T}}(\overline{\ulcorner\psi\urcorner})\right)$
(3) $\mathbf{I} \boldsymbol{\Sigma}_{0}+\mathbf{\Omega}_{1} \vdash \mathrm{P}_{\mathrm{v}_{T}}\left(\overline{\bar{\zeta} \varphi^{\bar{\gamma}}}\right) \rightarrow \mathrm{P}_{\mathrm{v}}\left(\overline{\left\ulcorner\mathrm{P}_{\mathrm{v}}\left(\overline{\Gamma \varphi^{\top}}\right)\right\urcorner}\right)$.

These conditions imply $T \nvdash \neg \mathrm{P}_{T}(\overline{\Gamma \perp})$.
(Proof) Self-reference Lemma yields σ s.t.

$$
\mathrm{Q} \vdash \sigma \leftrightarrow\left(\mathrm{P}_{\mathrm{v}_{T}}\left(\overline{\sigma^{\top} \overline{7}}\right) \rightarrow \perp\right) .
$$

Then the conditions (1) and (2) yield

(3) yields $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1} \vdash \mathrm{P}_{\mathrm{v}_{T}}\left(\overline{\Gamma \sigma^{\top}}\right) \rightarrow \mathrm{P}_{T}(\overline{\Gamma \perp \overline{7}})$, and so
$\mathbf{I} \boldsymbol{\Sigma}_{0}+\mathbf{\Omega}_{1} \vdash \neg \mathrm{Pv}_{T}(\overline{(\bar{\perp} \overline{7}}) \rightarrow \sigma$. Since $T \nvdash \sigma$, done!

A controversy

In the case of $T=\mathrm{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;

A controversy

In the case of $T=\mathbf{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;
- $\mathrm{P}_{\mathrm{v}}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathbf{n}} \equiv \exists x\left(W(x) \wedge \operatorname{Prf}(x, u)^{\mathbf{n}}\right)$; and $\operatorname{Con}(T)$ is $\neg \exists x\left(W(x) \wedge \operatorname{Prf}\left(x, \overline{\left\ulcorner\perp^{\urcorner}\right.}\right)^{\mathrm{n}}\right)$;

A controversy

In the case of $T=\mathbf{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;
- $\mathrm{P}_{\mathrm{v}}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathbf{n}} \equiv \exists x\left(W(x) \wedge \operatorname{Prf}(x, u)^{\mathrm{n}}\right)$; and $\operatorname{Con}(T)$ is $\neg \exists x\left(W(x) \wedge \operatorname{Prf}(x, \overline{\ulcorner\perp \overline{7}})^{\mathbf{n}}\right)$;
- Does this Con (T) really represent "consistency"?

A controversy

In the case of $T=\mathbf{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;
- $\mathrm{P}_{\mathrm{v}}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathrm{n}} \equiv \exists x\left(W(x) \wedge \operatorname{Prf}(x, u)^{\mathrm{n}}\right)$; and $\operatorname{Con}(T)$ is $\neg \exists x\left(W(x) \wedge \operatorname{Prf}\left(x, \overline{\left\ulcorner\perp^{\urcorner}\right.}\right)^{\mathrm{n}}\right)$;
- Does this Con (T) really represent "consistency"?

On the other hand, in the case of $T=\mathrm{ZFC}$,

- everything must be through von Neumann's interpretation v of $\mathrm{I} \boldsymbol{\Sigma}_{0}+\Omega_{1}$ in ZFC ;

A controversy

In the case of $T=\mathbf{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;
- $\operatorname{Pv}_{T}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathrm{n}} \equiv \exists x\left(W(x) \wedge \operatorname{Prf}(x, u)^{\mathrm{n}}\right)$; and $\operatorname{Con}(T)$ is $\neg \exists x\left(W(x) \wedge \operatorname{Prf}(x, \overline{\ulcorner\perp \overline{7}})^{\mathbf{n}}\right)$;
- Does this Con (T) really represent "consistency"?

On the other hand, in the case of $T=\mathrm{ZFC}$,

- everything must be through von Neumann's interpretation v of $\mathrm{I} \Sigma_{0}+\Omega_{1}$ in ZFC ;
- $\mathrm{Pv}_{T}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathbf{v}} \equiv(\exists x \in \omega) \operatorname{Prf}(x, u)^{\mathbf{v}}$; and $\operatorname{Con}(T)$ is $\neg(\exists x \in \omega) \operatorname{Prf}\left(x, \overline{\left\ulcorner\perp^{\urcorner}\right.}\right)^{\mathrm{v}}$.

A controversy

In the case of $T=\mathbf{Q}$:

- everything must be through Nelson's interpretation \mathbf{n} of $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1}$ in Q ;
- $\operatorname{Pv}_{T}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathrm{n}} \equiv \exists x\left(W(x) \wedge \operatorname{Prf}(x, u)^{\mathrm{n}}\right)$; and $\operatorname{Con}(T)$ is $\neg \exists x\left(W(x) \wedge \operatorname{Prf}(x, \overline{\ulcorner\perp \overline{7}})^{\mathbf{n}}\right)$;
- Does this Con (T) really represent "consistency"?

On the other hand, in the case of $T=\mathrm{ZFC}$,

- everything must be through von Neumann's interpretation v of $\mathrm{I} \Sigma_{0}+\Omega_{1}$ in ZFC ;
- $\mathrm{Pv}_{T}(u)$ is $(\exists x \operatorname{Prf}(x, u))^{\mathbf{v}} \equiv(\exists x \in \omega) \operatorname{Prf}(x, u)^{\mathbf{v}}$; and $\operatorname{Con}(T)$ is $\neg(\exists x \in \omega) \operatorname{Prf}\left(x, \overline{\Gamma^{\urcorner}}\right)^{\mathbf{v}}$.
What's the difference between them?

3. Connection to the present-day researches

Comparison of thoeries

Given $S \subseteq T$, under which condition, a theory T could be said essentially stronger than another S ?

Comparison of thoeries

Given $S \subseteq T$, under which condition, a theory T could be said essentially stronger than another S ?
(A) there is a sentence φ s.t. $S \nvdash \varphi$ and $T \vdash \varphi$?

- by changing ways of formalizing concepts, S might be able to simulate T;
- e.g., ZFC-FA can simulate ZFC, and ZFC-Ext can simulate ZFC.

Comparison of thoeries

Given $S \subseteq T$, under which condition, a theory T could be said essentially stronger than another S ?
(A) there is a sentence φ s.t. $S \nvdash \varphi$ and $T \vdash \varphi$?

- by changing ways of formalizing concepts, S might be able to simulate T;
- e.g., ZFC-FA can simulate ZFC, and ZFC-Ext can simulate ZFC.
(B) there is no interpretation of T in S ?
- prevents the possibility that S simulates T;

Comparison of thoeries

Given $S \subseteq T$, under which condition, a theory T could be said essentially stronger than another S ?
(A) there is a sentence φ s.t. $S \nvdash \varphi$ and $T \vdash \varphi$?

- by changing ways of formalizing concepts, S might be able to simulate T;
- e.g., ZFC-FA can simulate ZFC, and ZFC-Ext can simulate ZFC.
(B) there is no interpretation of T in S ?
- prevents the possibility that S simulates T;

While there is another way to obtain (A), e.g., constructing a model M s.t. $M \models S$ but $M \not \models T$,

Comparison of thoeries

Given $S \subseteq T$, under which condition, a theory T could be said essentially stronger than another S ?
(A) there is a sentence φ s.t. $S \nvdash \varphi$ and $T \vdash \varphi$?

- by changing ways of formalizing concepts, S might be able to simulate T;
- e.g., ZFC-FA can simulate ZFC, and ZFC-Ext can simulate ZFC.
(B) there is no interpretation of T in S ?
- prevents the possibility that S simulates T;

While there is another way to obtain (A), e.g., constructing a model M s.t. $M \models S$ but $M \not \models T$, practically the only way to obtain (B) is showing $T \vdash \operatorname{Con}(S)$.

Gödel hierarchy

For theories T and S which are consistent, recursively axiomatizable, essentially containing Q ,

- $S<T$ iff $T \vdash \operatorname{Con}(S)$;
- $S \equiv T$ iff $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1} \vdash \operatorname{Con}(S) \leftrightarrow \operatorname{Con}(T)$.

Gödel hierarchy

For theories T and S which are consistent, recursively axiomatizable, essentially containing Q,

- $S<T$ iff $T \vdash \operatorname{Con}(S)$;
- $S \equiv T$ iff $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1} \vdash \operatorname{Con}(S) \leftrightarrow \operatorname{Con}(T)$.

Large parts of proof theory and set theory are investigations of this hierarchy:

Gödel hierarchy

For theories T and S which are consistent, recursively axiomatizable, essentially containing Q ,

- $S<T$ iff $T \vdash \operatorname{Con}(S)$;
- $S \equiv T$ iff $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1} \vdash \operatorname{Con}(S) \leftrightarrow \operatorname{Con}(T)$.

Large parts of proof theory and set theory are investigations of this hierarchy:

- measure for $<$: proof theoretic ordinal; large cardinal.

Gödel hierarchy

For theories T and S which are consistent, recursively axiomatizable, essentially containing Q ,

- $S<T$ iff $T \vdash \operatorname{Con}(S)$;
- $S \equiv T$ iff $\mathbf{I} \boldsymbol{\Sigma}_{0}+\boldsymbol{\Omega}_{1} \vdash \operatorname{Con}(S) \leftrightarrow \operatorname{Con}(T)$.

Large parts of proof theory and set theory are investigations of this hierarchy:

- measure for $<$: proof theoretic ordinal; large cardinal.
- methods establishing \equiv : cut elimination; forcing; inner model, etc.

Picture of the hierarchy

$$
\begin{aligned}
& \mathrm{Z}_{\mathbf{2}}=\mathrm{ZF} \mathrm{C}-\mathrm{Pow} \\
& \Pi_{2}^{1}-\mathrm{CA}_{0} \\
& \mathbf{I D}_{<\omega} \equiv \Pi_{1}^{1}-\mathbf{C A}_{0} \\
& \mathrm{ID}_{1} \equiv \mathrm{BI} \equiv \mathrm{KP} \equiv \mathrm{CZF} \equiv \mathrm{MLT} \\
& \widehat{\mathrm{ID}}_{<\omega} \equiv \mathbf{I R} \equiv \mathrm{ATR}_{0} \\
& \mathrm{PA} \equiv \mathrm{ACA}_{0} \xlongequal{\stackrel{\vee}{ }} \Sigma_{1}^{1}-\mathrm{AC}_{0} \equiv \mathrm{HA} \\
& \mathrm{I} \Sigma_{2} \\
& \mathrm{PRA} \equiv \mathrm{I}_{1} \equiv \mathrm{RCA}_{0} \equiv \mathrm{WKL}_{0} \\
& \mathrm{Q} \equiv \mathrm{I} \Sigma_{0}+\Omega_{1}
\end{aligned}
$$

Picture of the hierarchy

$\mathrm{ID}_{1} \equiv \mathrm{BI} \equiv \mathrm{KP} \equiv \mathrm{CZF} \equiv \mathrm{MLT}$ $\widehat{\mathrm{ID}}_{<\omega} \equiv \mathrm{IR} \equiv \mathrm{ATR}_{0}$
$\mathrm{PA} \equiv \mathrm{ACA}_{0} \xlongequal{\stackrel{\vee}{ } \Sigma_{1}^{1}-\mathrm{AC}_{0} \equiv \mathrm{HA}}$
I Σ_{2}
$\mathrm{PRA} \equiv \mathrm{I} \boldsymbol{\Sigma}_{1} \equiv \mathrm{RCA}_{0} \equiv \mathrm{WKL}_{0}$

$$
\mathrm{Q} \equiv \mathrm{I} \Sigma_{0}+\Omega_{1}
$$

ZFC+ + $\stackrel{\vee}{\mathrm{ZFC}^{3}}$

$\mathrm{NBG}+\Pi_{1}^{1}-\mathrm{CA}$
NBG+ETR
$\mathrm{ZF} \equiv \mathrm{ZFC} \equiv \mathrm{NBG}$

$\mathrm{Z}_{<\omega}=\mathrm{ZBQC}$
$\mathrm{Z}_{2} \equiv \mathrm{ZFC}-$ Pow
$\mathbf{Z F C}+{ }^{*} 0=1 "$

Picture of the hierarchy

ZFC+Inac
$\mathrm{ID}_{1} \equiv \mathrm{BI} \equiv \mathrm{KP} \equiv \mathrm{CZF} \equiv \mathrm{MLT}$ $\widehat{\mathrm{ID}}_{<\omega} \equiv \mathrm{IR} \equiv \mathrm{ATR}_{0}$
$\mathrm{PA} \equiv \mathrm{ACA}_{0} \equiv \Sigma_{1}^{1}-\mathrm{AC}_{0} \equiv \mathrm{HA}$
$\mathrm{PRA} \equiv \mathrm{I}_{1} \equiv \mathrm{RCA}_{0} \equiv \mathrm{WKL}_{0}$

$$
\mathrm{Q} \equiv \mathrm{I} \Sigma_{0}+\Omega_{1}
$$

ZFC+Vop
ZFC+SCpt
ZFC+Wood
ZFC+Meas
$\mathrm{ZFC}+0^{\sharp}$
$\mathrm{NBG}+\Pi_{1}^{1}$-CA
NBG+ETR
$\mathrm{ZF} \equiv \mathrm{ZFC} \equiv \mathrm{NBG}$
V
$\mathbf{Z}_{<\omega} \equiv \mathbf{Z B Q C}$
Z_{3}

$$
\mathrm{Z}_{2} \equiv \mathrm{ZFC}-\mathrm{Pow}
$$

$$
\begin{aligned}
& \mathrm{Z}_{2}=\mathrm{ZFC}-\mathrm{Pow} \\
& \Sigma_{2}^{1}-\mathrm{AC} \equiv \mathrm{KPi} \equiv \mathrm{~T}_{0} \\
& \mathbf{I D}_{<\omega} \equiv \Pi_{1}^{1}-\mathbf{C A}_{0}
\end{aligned}
$$

$\mathrm{ZFC}+\cdot{ }^{*} 0=1 "$

Picture of the hierarchy

ZFC+Inac
$\mathrm{Z}_{\mathbf{2}} \equiv \mathrm{ZFC}-\mathrm{Pow}$
\vdots
$\mathrm{V}_{2}^{1}-\mathrm{CA}_{0}$
\vee
$\Sigma_{2}^{1}-\mathrm{AC} \equiv \mathrm{KPi} \equiv \mathrm{T}_{0}$
$\mathbf{I D}_{<\omega} \equiv \Pi_{1}^{1}-\mathbf{C A}_{0}$

$$
\begin{gathered}
\mathrm{ID}_{1} \equiv \mathrm{BI} \equiv \mathrm{KP} \equiv \mathrm{CZF} \equiv \mathrm{MLT} \\
\widehat{\mathrm{ID}} \\
<\omega \equiv \\
\mathrm{VA} \equiv \mathrm{IR}^{2} \equiv \mathrm{ATR}_{0} \\
\vee \\
\mathrm{ACA}_{0} \equiv \Sigma_{1}^{1}-\mathrm{AC}_{0} \equiv \mathrm{HA} \\
\vdots \\
\mathrm{~V} \\
\mathrm{I} \Sigma_{2} \\
\vee
\end{gathered}
$$

$\mathrm{PRA} \equiv \mathrm{I}_{1} \equiv \mathrm{RCA}_{0} \equiv \mathrm{WKL}_{0}$
$\mathrm{Q} \equiv \mathrm{I} \Sigma_{0}+\Omega_{1}$
$\mathrm{Z}_{2} \equiv \mathrm{ZFC}-\mathrm{Pow}$
$\mathrm{ZFC}+.{ }^{0} 0=1 "$

Picture of the hierarchy

$$
\Sigma_{2}^{1}-\mathrm{AC} \equiv \mathrm{KPi} \equiv \mathrm{~T}_{0}
$$

$$
\mathrm{ID}_{<\omega} \equiv \Pi_{1}^{1}-\mathrm{CA}_{0}
$$

$$
\mathrm{ID}_{1} \equiv \mathrm{BI} \equiv \mathrm{KP} \equiv \mathrm{CZF} \equiv \mathrm{MLT}
$$

$$
\widehat{\mathrm{ID}}_{<\omega} \equiv \mathrm{IR}=\mathrm{ATR}_{0}
$$

$$
\mathbf{P A} \equiv \mathbf{A C A}_{0} \equiv \Sigma_{1}^{1}-\mathbf{A C}_{0} \equiv \mathbf{H A}
$$

$$
\mathbf{P R A} \equiv \mathbf{I} \boldsymbol{\Sigma}_{1} \equiv \mathbf{R C A}_{0} \equiv \mathbf{W K L}_{0}
$$

$$
\mathrm{Q} \equiv \mathrm{I} \boldsymbol{\Sigma}_{\mathrm{n}}+\Omega_{1}
$$

ZFC+Vop
ZFC+ + Sct
ZFC+Wood
ZFC+Meas

ZFC+WCpt

ZFC+2-Mahlo ZFC + Mahlo

ZFC+ $+\omega$-Inac
ZFC+2-Inac
ZFC+Iñăc

