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Outline
1. Know the statement correctly (40min):

• the notions in the statement correctly;

• the preconditions correctly;

• counterexamples to preconditions?

2. A brief look at the proofs (15min):
• ω-consistency;

• Gödel sentence vs. Rosser sentence;

• Kreisel’s remark;

• Loeb’s derivability conditions;

3. Connection to the present-day researches (5min):
• Gödel hierarchy;

• my own contributions.
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The Statement
If a first order theory T satisfies the following:

• ...

• ...

• ...

then the following hold:

1st incompleteness: T is incomplete;

2nd incompleteness: T cannot prove a sentence
which represents the consistency of T .
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The Statement
If a first order theory T satisfies the following:

• ...

• ...
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Three Completenesses

Semantical Completeness

“provable” ⇔ “true in any model”:

• (Weak) ⊢ ϕ ⇐⇒ |= ϕ;

• (Strong) Γ ⊢ ϕ ⇐⇒ Γ |= ϕ.

Negation Completeness

Arithmetical Completeness
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Three Completenesses

Semantical Completeness

• Gödel-Henkin’s completeness theorem;
• Kripke completeness

(modal logics, intuitionistic logic).

Negation Completeness

• Gödel(-Rosser)’s 1st incompleteness theorem;
• completeness of theories of

algebraic closed / real closed fields

Arithmetical Completeness

Σ0
1 completeness (of Q, PA, ZFC, etc.)
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Consistency

A first order theory T is consistent iff
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Consistency

A first order theory T is consistent iff

• T 6⊢ ⊥

and/or

• T 6⊢ ϕ for some ϕ

and/or

• either T 6⊢ ϕ or T 6⊢ ¬ϕ for any ϕ, i.e.,
it’s not the case that T ⊢ ϕ and T ⊢ ¬ϕ.

If T is not consistent,

• T ⊢ ϕ for any ϕ;

• hence either T ⊢ ϕ or T ⊢ ¬ϕ
(negation completeness).
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Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

• there is Γ such that
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• {pϕq |ϕ ∈ Γ} is decidable;
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Recursive Axiomatizability

A first order theory T is recursively axiomatizable iff

• there is Γ such that
• Γ ⊢ ϕ ⇐⇒ T ⊢ ϕ for any ϕ ∈ LT and

• {pϕq |ϕ ∈ Γ} is decidable;

and/or

• there is Γ such that
• Γ ⊢ ϕ ⇐⇒ T ⊢ ϕ for any ϕ ∈ LT and

• {pϕq |ϕ ∈ Γ} is semi-decidable;

and/or

• {pϕq |T ⊢ ϕ} is semi-decidable.

Th(N) = {ϕ∈LPA |N |= ϕ} is negation complete.
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Craig’s Theorem

If {pϕq |T ⊢ ϕ} is semi-decidable,
then there is Γ such that
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• Γ ⊢ ϕ ⇐⇒ T ⊢ ϕ for any ϕ ∈ LT and

• {pϕq |ϕ ∈ Γ} is decidable

(Proof) Take a recursive predicate R such that

T ⊢ ϕ ⇐⇒ ∃nR(pϕq, n) for any ϕ ∈ LT .

Define the following recursive set of axioms

Γ = {ψ | (∃n,pϕq<pψq)(R(pϕq, n)&ψ ≡ ϕ∧...∧ϕ)}.

• ψ ∈ Γ ⇒ T ⊢ ϕ&ψ ≡ ϕ∧...∧ϕ ⇒ T ⊢ ψ;

• T ⊢ ϕ ⇒ ∃nR(pϕq, n) ⇒ ϕ∧...∧ϕ︸ ︷︷ ︸
n+1

∈ Γ ⇒ Γ ⊢ ϕ.
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Henkin’s Lemma:
If Γ 6⊢ ⊥ then there is maximal consistent ∆ ⊇ Γ.

(Proof) Let ϕn’s enumerate all L formulae. Define

Γn+1 :=

{
Γn if Γn ∪ {ϕn} ⊢ ⊥

Γn ∪ {ϕn} if Γn ∪ {ϕn} 6⊢ ⊥.

starting from Γ0 := Γ. Take ∆ :=
⋃

n∈ω Γn. �
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Henkin Construction

Henkin’s Lemma:
If Γ 6⊢ ⊥ then there is maximal consistent ∆ ⊇ Γ.

(Proof) Let ϕn’s enumerate all L formulae. Define

Γn+1 :=

{
Γn if Γn ∪ {ϕn} ⊢ ⊥

Γn ∪ {ϕn} if Γn ∪ {ϕn} 6⊢ ⊥.

starting from Γ0 := Γ. Take ∆ :=
⋃

n∈ω Γn. �

Note:
The theory generated by ∆ is negation complete:
either ϕ ∈ ∆ or ¬ϕ ∈ ∆ holds for any ϕ ∈ L.
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The Statement (4)

If a first order theory T satisfies the following:

• T is consistent;

• T is recursively axiomatizable;

• T essentially contains Robinson Arithmetic Q,

then the following hold:

1st incompleteness: T is not complete.
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Robinson Arithmetic Q

Language (function) 0; S(-); +, ·; (relation) <.

Axioms 1. ¬(S(x)= 0);

2. S(x)=S(y)→ x= y;

3. x=0∨∃y(x=S(y));

4. x+0= x; and x+S(y)=S(x+y);

5. x·0=0; and x·S(y)= (x·y)+x.;

6. x<y↔∃z(x+S(z)= y).

– p. 18



Robinson Arithmetic Q

Language (function) 0; S(-); +, ·; (relation) <.

Axioms 1. ¬(S(x)= 0);

2. S(x)=S(y)→ x= y;

3. x=0∨∃y(x=S(y));

4. x+0= x; and x+S(y)=S(x+y);

5. x·0=0; and x·S(y)= (x·y)+x.;

6. x<y↔∃z(x+S(z)= y).

Remarks

• first introduced by R. M. Robison in 1950 w/o <;

• has no induction axiom (schema).
– p. 18



Theories containing Q

• PA extends Q by induction scheme:

ϕ(0)∧∀x(ϕ(x)→ϕ(S(x))→∀xϕ(x) for ϕ ∈ LQ.
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Theories containing Q

• PA extends Q by induction scheme:

ϕ(0)∧∀x(ϕ(x)→ϕ(S(x))→∀xϕ(x) for ϕ ∈ LQ.

• IΣn extends Q by induction for Σ0
n

formulae:

1. Σ0
n
= {∃xn∀xn−1...Qx1ϕ(~x) |ϕ∈∆0

0} and

2. ϕ∈∆0
0 iff all quantifiers in ϕ are bounded

(i.e., of the forms ∀x< t and ∃x< t).

• PRA extends Q by

1. LPRA := LQ ∪ {F |F ∈ PrimRec};

2. induction for quantifier-free LPRA formulae.

• ZFC extends Q ... really? in which sense?
– p. 19



Interpretation

An interpretation I of L in L′ consists of:

• an L′ formula υI(x), called universe;
• for function f(~x) of L, an L′ formula f I(y, ~x);
• for relation R(~x) of L, an L′ formula RI(~x).
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∧

i≤k
ti
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I(z1, .., zn));
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Interpretation 2

Given an interpretation I of L in L′.

• I is an interpretation in an L′ theory T ′ iff
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Interpretation 2

Given an interpretation I of L in L′.

• I is an interpretation in an L′ theory T ′ iff

1. T ′ ⊢ ∃xυI(x);

2. T ′ ⊢ ∀~x(υI(~x)→∃!y(υI(y) ∧ f
I(y, ~x))).

• I is an interpretation of an L theory T in T ′ iff

1. (as above);

2. (as above);

3. if T ⊢ ϕ then T ′ ⊢ ϕI for any ϕ ∈ L.

– p. 21
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Theories ess. containing Q

“T ′ ess. contains T ” = “∃ interpretation of T in T ′”.

• ZFC essentially contains Q
by von Neumann interpretation v:

1. υv(x)≡ “x is a finite von Neumann ordinal”;

2. Sv(y, x) ≡ y=x ∪ {x}, etc.;

• modal extensions of PA (directly) contains Q;

• Heyting Arithmetic HA (ess.) contains Q by
• HA literally extends PA in ∧,¬,∀,

with extra-operators ∨,∃ (like modality);
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(ϕ∨ψ)N ≡¬(¬ϕN∧¬ψN); (∃xϕ(x))N ≡¬∀x¬ϕ(x)N ; etc.
– p. 22



Presburger Arithmetic PresA

Language LPresA = {0, S,+};

Axioms 1. ¬(S(x)= 0);

2. S(x)=S(y)→ x= y;

3. x=0∨∃y(x=S(y));

4. x+0= x; and x+S(y)=S(x+y);

5. induction for all LPresA formulae.
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Theory of real closed fields RCF

Language LRCF := {0, 1,−,+, ·, <};

Axioms 1. x+0= x; x+(−x)= 0; x+y= y+x;

2. x·0=0; x·(y+z)= x·y+x·z; x·y= y·x;

3. x<y→x+z < y+z; x> 0∧ y > 0→ x·y > 0;

4. x> 0→∃y(x= y·y);

5. ∀x2n+1...x0(x2n+1 6=0→∃y(
∑

i≤2n+1
xi·y

i=0)).
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• proven by Tarski (1951) to admit
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Quiz 2 — Which is correct?

• Hilbert’s Programme looks for:

a complete and decidable axiomatization
of real numbers.

Gödel Incompleteness Theorem answers:

“impossible”.

• Tarski’s Theorem (1951):

quantifier elimination of real closed field.

As a consequence, it yields:

a complete and decidable axiomatization

of (R, 0, 1,−,+, ·, <).

– p. 25



The Statement (5)

If a first order theory T satisfies the following:

• T is consistent;

• T is recursively axiomatizable;

• T essentially contains Robinson Arithmetic Q,

then the following hold:

1st incompleteness: T is not complete;
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Nelson’s trick
There is an interpretation of IΣ0 +Ω1 in Q.

• Main idea: define an LQ formula W (x) which
intuitively means “< is well-founded below x”;
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+n(z, x, y)≡ z=x+y; ·n(z, x, y)≡ z=x·y.

3. =n(x, y)≡ x= y; <n(x, y)≡ x<y.

• Compare to ϕ 7→ ϕWF in set theory.

As a consequence,

“T ess. contains Q” ⇐⇒ “T ess. contains IΣ0+Ω1”
– p. 27



Numeralwise representation
R ⊆ ωn is numeralwise represented by ϕ(~x) iff

• Q ⊢ ϕ(k1, ..., kn) ⇐⇒ R(k1, ..., kn) and

• Q ⊢ ¬ϕ(k1, ..., kn) ⇐⇒ ¬R(k1, ..., kn),

where k := S(...(S︸ ︷︷ ︸
k

(0)...).
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• Q ⊢ PrfT (pΛq, pϕq) ⇐⇒ Λ is a T -proof of ϕ

Q ⊢ ¬PrfT (pΛq, pϕq) ⇐⇒ Λ is not a T -proof of ϕ
(if T is recursively axiomatizable).

Then it is natural to define

Con(T ) :≡ ¬∃xPrfT (x, p⊥q). – p. 28



Ambiguity

Even if the following hold for all Λ and ϕ:

• Q ⊢ PrfT (pΛq, pϕq) ⇐⇒ Λ is a T -proof of ϕ and

Q ⊢ ¬PrfT (pΛq, pϕq) ⇐⇒ Λ is not a T -proof of ϕ;

• Q ⊢ Prf∗
T
(pΛq, pϕq) ⇐⇒ Λ is a T -proof of ϕ and

Q ⊢ ¬Prf∗
T
(pΛq, pϕq) ⇐⇒ Λ is not a T -proof of ϕ;
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• Q ⊢ ∀x, y(PrfT (x, y)↔Prf∗
T
(x, y)), nor

• Q ⊢ Con(T )↔Con∗(T ),

where Con∗(T ) :≡ ¬∃xPrf∗
T
(x, p⊥q).

The point here:

T ⊢ ϕ(k) for all k ∈ ω 6⇒ T ⊢ ∀xϕ(x). – p. 29



Quiz 3 — Which is correct?

• Gödel 2nd Incompleteness (1931):

PA cannot prove a sentence which
represents the consistency of PA.

• Kreisel’s Remark (1960):

PA does prove a sentence which
represents the consistency of PA.
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2. A Brief Look at the Proofs

– p. 31



Rosser’s trick
Given PrfT such that, for all Λ and ϕ,

• Q ⊢ PrfT (pΛq, pϕq) ⇐⇒ Λ is a T -proof of ϕ,

• Q ⊢ ¬PrfT (pΛq, pϕq) ⇐⇒ Λ is not a T -proof of ϕ,

– p. 32
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T

by
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T
(x, u) : ≡Prf(x, u)∧

(∀z <x)∀v¬(neg(u, v) ∧ Prf(z, v)).
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If T is consistent, ⇐= also holds. – p. 32
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Kreisel’s remark (1960)

Since there is a proof ∆ of ¬⊥, if T is consistent,

Q ⊢ (∀x< p∆q)¬Prf(x, p⊥q).

– p. 33
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Prf∗
T
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Q ⊢ (∀x< p∆q)¬Prf(x, p⊥q).

Hence, Q proves

Prf∗
T
(x, p⊥q) ≡ PrfT (x, p⊥q)∧

(∀z <x)∀v¬(neg(p⊥q, v) ∧ PrfT (z, v))

→ ∀v¬(neg(p⊥q, v) ∧ PrfT (p∆q, v))

↔ ¬PrfT (p∆q, p¬⊥q)

→ ⊥.

For any consistent recursively axiomatizable T ,

Q ⊢ Con∗(T ). – p. 33



The Statement (6)

If a first order theory T satisfies the following:

• T is consistent;

• T is recursively axiomatizable;

• T essentially contains Robinson Arithmetic Q,

then the following hold:

1st incompleteness: T is not complete;

2nd incompleteness: T cannot prove a sentence
which represents the consistency of T .
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2nd incompleteness: T cannot prove a sentence
which represents the consistency of T .
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Gödel’s result
If a first order theory T satisfies the following:

• T is ω-consistent;

• T is recursively axiomatizable;

• T essentially contains Robinson Arithmetic Q,

then the following hold:

1st incompleteness: T is not complete;

2nd incompleteness: T cannot prove a sentence
which represents the consistency of T .

T is called ω-consistent iff there is no ϕ(x) ∈ LT s.t.

• T ⊢ ¬ϕ(k) for all k ∈ ω;

• T ⊢ ∃xϕ(x). – p. 35



Gödel’s Self-reference Lemma
Lemma For any ϕ(x) ∈ LQ, there is a LQ sentence θ
s.t.

Q ⊢ θ↔ϕ(pθq).
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For any τ(x),

Q ⊢ ρ(pτ(x)q)↔ϕ(pτ(pτ(x)q)q).

Letting τ(x)≡ ρ(x) and θ≡ ρ(pρ(x)q), we have

Q ⊢ ρ(pρ(x)q)↔ϕ(pρ(pρ(x)q)q).
– p. 36



Gödel’s 1st incompleteness

Theorem If T is ω-consistent, ...(omitted)...,
then there is σ ∈ LQ s.t. T 6⊢ σ and T 6⊢ ¬σ.
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Suppose T ⊢ ¬σ. So Q ⊢ Prf∗
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A dilemma
• To obtain the incompleteness

without ω-consistency but only consistency,

the key is Rosser’s modification Prf∗
T

for representing the notion “... is a proof of ...”;
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A dilemma
• To obtain the incompleteness

without ω-consistency but only consistency,

the key is Rosser’s modification Prf∗
T

for representing the notion “... is a proof of ...”;

• but the corresponding consistency statement

Con∗(T ) is provable even in Q and hence in T .
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Loeb’s derivability conditions

A “canonicality” on PvT (u)≡∃xPrfT (x, u):
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(3) IΣ0+Ω1 ⊢ PvT (pϕq)→PvT (pPvT (pϕq)q).
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In the case of T = Q:

• everything must be through Nelson’s
interpretation n of IΣ0+Ω1 in Q;
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In the case of T = Q:

• everything must be through Nelson’s
interpretation n of IΣ0+Ω1 in Q;

• PvT (u) is (∃xPrf(x, u))n≡∃x(W (x) ∧ Prf(x, u)n);

and Con(T ) is ¬∃x(W (x) ∧ Prf(x, p⊥q)n);

• Does this Con(T ) really represent “consistency”?

On the other hand, in the case of T = ZFC,

• everything must be through von Neumann’s
interpretation v of IΣ0+Ω1 in ZFC;

• PvT (u) is (∃xPrf(x, u))v ≡ (∃x ∈ ω)Prf(x, u)v;

and Con(T ) is ¬(∃x ∈ ω)Prf(x, p⊥q)v.

What’s the difference between them?
– p. 41



3. Connection to the present-day
researches
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Comparison of thoeries

Given S⊆T , under which condition, a theory T
could be said essentially stronger than another S?
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Comparison of thoeries

Given S⊆T , under which condition, a theory T
could be said essentially stronger than another S?

(A) there is a sentence ϕ s.t. S 6⊢ ϕ and T ⊢ ϕ?
• by changing ways of formalizing concepts,
S might be able to simulate T ;

• e.g., ZFC−FA can simulate ZFC,
and ZFC−Ext can simulate ZFC.

(B) there is no interpretation of T in S?
• prevents the possibility that S simulates T ;

While there is another way to obtain (A), e.g.,

constructing a model M s.t. M |= S but M 6|= T ,

practically the only way to obtain (B) is

showing T ⊢ Con(S). – p. 43



Gödel hierarchy

For theories T and S which are consistent, recursively
axiomatizable, essentially containing Q,

• S <T iff T ⊢ Con(S);

• S≡T iff IΣ0+Ω1 ⊢ Con(S)↔Con(T ).
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axiomatizable, essentially containing Q,

• S <T iff T ⊢ Con(S);

• S≡T iff IΣ0+Ω1 ⊢ Con(S)↔Con(T ).

Large parts of proof theory and set theory are
investigations of this hierarchy:

• measure for <:
proof theoretic ordinal; large cardinal.

• methods establishing ≡:
cut elimination; forcing; inner model, etc.
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