Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistence of Arithmet

Non-Triviality

Naive Arithmetic and Axiomat zability

Coda: Gödel's Second Incompleteness Theorem

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

November 4, 2016

Graham Priest Gödel's Theorem: Inconsistency vs Incompleteness

イロト イポト イヨト イヨト

Plan

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmeti

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem 1 Introduction: the Standard View

2 Gödel's Proof

3 The Inconsistency of Arithmetic

4 Non-Triviality

5 Naive Arithmetic and Axiomatizability

6 Coda: Gödel's Second Incompleteness Theorem

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Statement of the Theorem

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction: the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Gödel's first incompleteness theorem: any axiomatic theory of arithmetic, with appropriate expressive capabilities, is incomplete.

< A ▶

Statement of the Theorem

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction: the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Gödel's first incompleteness theorem: any axiomatic theory of arithmetic, with appropriate expressive capabilities, is incomplete.

■ *Inaccurate*: it must be either incomplete or inconsistent.

30.00

Assumptions about T

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standarc View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem A Gödel codes are assigned to syntactic entities, such as formulas and proofs. If *n* is a number, write its numeral as **n**. If *A* is a formula with code *n*, write $\langle A \rangle$ for **n**.

- 同 ト - ヨ ト - - ヨ ト

Assumptions about T

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- A Gödel codes are assigned to syntactic entities, such as formulas and proofs. If *n* is a number, write its numeral as **n**. If *A* is a formula with code *n*, write $\langle A \rangle$ for **n**.
- B There is a formula with two free variables, B(x, y), which represents the proof relation of T. That is:
 - (i) if n is the code of a proof of A in T then B(n, ⟨A⟩) is true in the standard model
 - (ii) if *n* is the not code of a proof of *A* in *T* then $\neg B(\mathbf{n}, \langle A \rangle)$ is true in the standard model

< 日 > < 同 > < 三 > < 三 >

Assumptions Ctd.

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem C Define Prov(y) as $\exists xB(x, y)$. Then Prov is a proof predicate for T. That is:

• if $T \vdash A$ then $T \vdash Prov \langle A \rangle$

< 日 > < 同 > < 三 > < 三 >

Assumptions Ctd.

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem C Define Prov(y) as $\exists xB(x, y)$. Then Prov is a proof predicate for T. That is:

• if $T \vdash A$ then $T \vdash Prov \langle A \rangle$

D There is a formula, G, of the form $\neg Prov \langle G \rangle$

< 日 > < 同 > < 三 > < 三 >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem • If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.

イロト イポト イヨト イヨト

æ

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standarc View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.

(日) (同) (三) (三)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.

(日) (同) (三) (三)

3

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent. *T* ⊭ *G*

(日) (同) (三) (三)

3

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.
- *T* ∀ *G*
- No number is the code of a proof of *G*.

- 4 同 6 4 日 6 4 日 6

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.
- *T* \/ *G*
- No number is the code of a proof of G.
- For any *n*, $\neg B(\mathbf{n}, \langle G \rangle)$ is true in the standard model.

・ 同 ト ・ ヨ ト ・ ヨ ト

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.
- *T* \/ *G*
- No number is the code of a proof of G.
- For any $n, \neg B(\mathbf{n}, \langle G \rangle)$ is true in the standard model.
- $\forall x \neg B(x, \langle G \rangle)$ is true in the standard model

・ 同 ト ・ ヨ ト ・ ヨ ト

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.
- *T* \/ *G*
- No number is the code of a proof of G.
- For any *n*, $\neg B(\mathbf{n}, \langle G \rangle)$ is true in the standard model.
- $\forall x \neg B(x, \langle G \rangle)$ is true in the standard model
 - $\neg \exists x B(x, \langle G \rangle)$ $\neg Prov \langle G \rangle$ = G
 - G
- G is true in the standard model.

- 同 ト - ヨ ト - - ヨ ト

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- If $T \vdash G$ then $T \vdash \neg Prov \langle G \rangle$.
- If $T \vdash G$ then $T \vdash Prov \langle G \rangle$.
- So if $T \vdash G$, T is inconsistent.
- Suppose that *T* is consistent.
- *T* \/ *G*
- No number is the code of a proof of *G*.
- For any n, $\neg B(\mathbf{n}, \langle G \rangle)$ is true in the standard model.
- $\forall x \neg B(x, \langle G \rangle)$ is true in the standard model
 - $\neg \exists x B(x, \langle G \rangle)$ $\neg Prov \langle G \rangle$
 - ∎ G
- *G* is true in the standard model.
- So if T is consistent, it is incomplete.
- Contrapositively, if T is complete, it is inconsistent.

Löb's Principle

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem • if *Prov* $\langle A \rangle$ then *A*

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Fix an appropriate language for first-order arithmetic.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introductior the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Fix an appropriate language for first-order arithmetic.
- Let *T* be the theory containing all the things which are analytically true in this language.

(4月) (1日) (日)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Fix an appropriate language for first-order arithmetic.
- Let *T* be the theory containing all the things which are analytically true in this language.
- We do not assume that T is axiomatic.

< A ▶

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Fix an appropriate language for first-order arithmetic.
- Let *T* be the theory containing all the things which are analytically true in this language.
- We do not assume that *T* is axiomatic.
- Write \vdash for provability in T.

< A ▶

Assumptions

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem The basic facts about Gödel codes can be established in T.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Assumptions

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- The basic facts about Gödel codes can be established in *T*.
- The language contains a monadic predicate, P, which expresses this notion of provability in T.

- 4 周 ト 4 戸 ト 4 戸 ト

Assumptions

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- The basic facts about Gödel codes can be established in *T*.
- The language contains a monadic predicate, P, which expresses this notion of provability in T.

 $\begin{bmatrix} 1 \end{bmatrix} \vdash \neg P \langle A \rangle \lor A \\ \begin{bmatrix} 2 \end{bmatrix} \vdash A \text{ then } \vdash P \langle A \rangle$

- 4 同 2 4 日 2 4 日 2

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

• *G* is $\neg P \langle G \rangle$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

• *G* is
$$\neg P \langle G \rangle$$

$$\blacksquare \vdash \neg P \langle G \rangle \lor G$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

• G is
$$\neg P \langle G \rangle$$

$$\vdash \neg P \langle G \rangle \lor G \\ \vdash \neg P \langle G \rangle \lor \neg P \langle G \rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomat zability

Coda: Gödel's Second Incompleteness Theorem • G is $\neg P \langle G \rangle$

 $\vdash \neg P \langle G \rangle \lor G$ $\vdash \neg P \langle G \rangle \lor \neg P \langle G \rangle$

$$\blacksquare \vdash \neg P \langle G \rangle$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomat zability

Coda: Gödel's Second Incompleteness Theorem

• G is
$$\neg P \langle G \rangle$$

$$\vdash \neg P \langle G \rangle \lor G \\ \vdash \neg P \langle G \rangle \lor \neg P \langle G \rangle$$

$$\blacksquare \vdash \neg P \langle G \rangle$$

 $\blacksquare \vdash G$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomat zability

Coda: Gödel's Second Incompleteness Theorem • G is $\neg P \langle G \rangle$

 $\vdash \neg P \langle G \rangle \lor G$ $\vdash \neg P \langle G \rangle \lor \neg P \langle G \rangle$

$$\vdash \neg P \langle G \rangle$$

 $\blacksquare \vdash P \langle G \rangle$

(a)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomat zability

Coda: Gödel's Second Incompleteness Theorem

• *G* is
$$\neg P \langle G \rangle$$

$$\vdash \neg P \langle G \rangle \lor G$$
$$\vdash \neg P \langle G \rangle \lor \neg P \langle G \rangle$$

$$\blacksquare \vdash \neg P \left< G \right>$$

$$-\vdash G$$

 $\blacksquare \vdash P\left\langle G\right\rangle$

Note: This does not show that the *P*-free fragment of *T* is inconsistent.

(日) (同) (三) (三)

3

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem • Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

• $T \vdash L \supset (Prov \langle L \rangle \supset A)$

(日) (同) (三) (三)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistent

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem • Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

• $T \vdash L \supset (Prov \langle L \rangle \supset A)$

• $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$

- 4 同 6 4 日 6 4 日 6

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introductior the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $\blacksquare \ T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$
- $T \vdash Prov \langle L \rangle \supset (Prov \langle L \rangle \supset A)$

< A ▶

.

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem • Let A be any sentence.

• *L* is *Prov* $\langle L \rangle \supset A$.

- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$
- $T \vdash Prov \langle L \rangle \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \rangle \supset A$

< A >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introductior the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let A be any sentence.
- *L* is *Prov* $\langle L \rangle \supset A$.
- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $\blacksquare T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$
- $T \vdash Prov \langle L \rangle \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \rangle \supset A$
- $\blacksquare T \vdash L$

< A >

.

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let A be any sentence.
- *L* is *Prov* $\langle L \rangle \supset A$.
- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $\blacksquare \ T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$
- $T \vdash Prov \langle L \rangle \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \rangle \supset A$
- $\blacksquare T \vdash L$
- $T \vdash Prov \langle L \rangle$

< A >

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let A be any sentence.
- *L* is *Prov* $\langle L \rangle \supset A$.
- $T \vdash L \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \supset (Prov \langle L \rangle \supset A) \rangle$
- $\blacksquare \ T \vdash Prov \langle L \rangle \supset Prov \langle Prov \langle L \rangle \supset A \rangle$
- $T \vdash Prov \langle L \rangle \supset (Prov \langle L \rangle \supset A)$
- $T \vdash Prov \langle L \rangle \supset A$
- $\blacksquare T \vdash L$
- $T \vdash Prov \langle L \rangle$
- $T \vdash A$

< A >

4 3 6 4 3

Modelling Löbs Principle

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Let M be a finite collapsed model of the standard model of arithmetic

• Let T be $Th(\mathfrak{M})$

(日) (同) (三) (三)

Modelling Löbs Principle

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- \blacksquare Let ${\mathfrak M}$ be a finite collapsed model of the standard model of arithmetic
- Let T be $Th(\mathfrak{M})$
- Everything true in the standard model is in T
- T is decidable

Modelling Löbs Principle

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- \blacksquare Let ${\mathfrak M}$ be a finite collapsed model of the standard model of arithmetic
- Let T be $Th(\mathfrak{M})$
- Everything true in the standard model is in T
- T is decidable
- Let *Prov* be the arithmetic formula that defines *T* in the standard model
 - [3] if $A \in T$, *Prov* $\langle A \rangle$ is true in the standard model, and so is in T
 - [4] if $A \notin T$, $\neg Prov \langle A \rangle$ is true in the standard model, and so is in T

(日) (同) (三) (三)

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

Take *P* as *Prov*

<ロ> <同> <同> < 同> < 同>

æ

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmeti

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

■ Take *P* as *Prov*

• That $\vdash A$ implies $\vdash P \langle A \rangle$ is immediate

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

Take P as Prov

• That $\vdash A$ implies $\vdash P \langle A \rangle$ is immediate

• For $\vdash \neg P \langle A \rangle \lor A$:

.

- Either $A \in T$ of $A \notin T$.
- In the first case, $\neg Prov \langle A \rangle \lor A \in T$.
- In the second case, $\neg Prov \langle A \rangle \in T$
- So $\neg Prov \langle A \rangle \lor A \in T$.

- 4 同 6 4 日 6 4 日 6

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem Take P as Prov

• That $\vdash A$ implies $\vdash P \langle A \rangle$ is immediate

• For $\vdash \neg P \langle A \rangle \lor A$:

.

- Either $A \in T$ of $A \notin T$.
- In the first case, $\neg Prov \langle A \rangle \lor A \in T$.
- In the second case, $\neg Prov \langle A \rangle \in T$

So
$$\neg Prov \langle A \rangle \lor A \in T$$
.

Moreover, unless the collapsed model is one in which everything is identified with 0, T is non-trivial.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 戸

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem Is Naive Arithmetic axiomatizable?

(日) (同) (三) (三)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem

- Is Naive Arithmetic axiomatizable?
- Learning how to prove things in arithmetic is a skill that is taught and learned.

- 4 同 6 4 日 6 4 日 6

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem

- Is Naive Arithmetic axiomatizable?
- Learning how to prove things in arithmetic is a skill that is taught and learned.
- The assumption that the canons of naive proof are axiomatic is the most natural explanation of this fact.

< A ▶

- - E - - E

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem

- Is Naive Arithmetic axiomatizable?
- Learning how to prove things in arithmetic is a skill that is taught and learned.
- The assumption that the canons of naive proof are axiomatic is the most natural explanation of this fact.
- Any other explanation would make the grasp of the canons something of a mystery for human cognition.

・ 戸 ト ・ ヨ ト ・ ヨ

Practical Consistency

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem Let the least inconsistent number be n

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Practical Consistency

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standar View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem

- Let the least inconsistent number be *n*
- The fragment of arithmetic with quantifiers bounded to numbers less than *n* is consistent.

- 4 同 2 4 日 2 4 日 2

Practical Consistency

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomatizability

Coda: Gödel's Second Incompleteness Theorem

- Let the least inconsistent number be *n*
- The fragment of arithmetic with quantifiers bounded to numbers less than n is consistent.

n could be inordinately large

- 4 周 ト 4 月 ト 4 月

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standarc View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

• Let T be any complete axiomatic arithmetic such that $T \not\vdash 0 = 1$

(日) (同) (三) (三)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let T be any complete axiomatic arithmetic such that $T \not\vdash 0 = 1$
- Then for every n, ¬B(n, (0 = 1)) is true in the standard model

- 4 同 6 4 日 6 4 日 6

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let T be any complete axiomatic arithmetic such that $T \not\vdash 0 = 1$
- Then for every n, ¬B(n, (0 = 1)) is true in the standard model
- So $\neg \exists x B(x, \langle 0 = 1 \rangle)$ is true in the standard model

- 4 同 6 4 日 6 4 日 6

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let T be any complete axiomatic arithmetic such that $T \not\vdash 0 = 1$
- Then for every n, ¬B(n, (0 = 1)) is true in the standard model
- So $\neg \exists x B(x, \langle 0 = 1 \rangle)$ is true in the standard model
- That is, $\neg Prov \langle 0 = 1 \rangle$ is true in the standard model.

(4月) (4日) (4日)

Gödel's Theorem: Inconsistency vs Incompleteness

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

- Let T be any complete axiomatic arithmetic such that $T \not\vdash 0 = 1$
- Then for every n, ¬B(n, (0 = 1)) is true in the standard model
- So $\neg \exists x B(x, \langle 0 = 1 \rangle)$ is true in the standard model
- That is, $\neg Prov \langle 0 = 1 \rangle$ is true in the standard model.
- So $T \vdash \neg Prov \langle 0 = 1 \rangle$.

(人間) システレ イテレ

Graham Priest

Introduction the Standard View

Gödel's Proof

The Inconsistency of Arithmetic

Non-Triviality

Naive Arithmetic and Axiomati zability

Coda: Gödel's Second Incompleteness Theorem

Fin

*ロト *部ト *注ト *注ト

æ