MANY-VALUED MODAL LOGICS

Denisa Diaconescu - University of Bern, University of Bucharest

SGSLPS Meeting October 30th, 2015

WHAT ARE MANY-VALUED MODAL LOGICS?

Modal Logic Modal Logic Modal Logic Modal Logic Modal Logic

Modal Logic Modal Logic Modal Logic Modal Logic

POSSIBLE WORLDS SEMANTICS

- Kripke frame: $\langle W, R \rangle$ $R \subseteq W \times W$
- Valuation:
 - $V: Var \times W \rightarrow \{$ false, true $\}$

- Kripke frame: $\langle W, R \rangle$ $R \subseteq W \times W$
- Valuation:
 - $V: Var \times W \rightarrow \{$ false, true $\}$

Extending V: $V(\Box \varphi, w) = \bigwedge_{R(w,w')} V(\varphi, w')$

 $V(\Box p, w_1) =$ true

What happens if V is allowed to be partial?

A variable at a world can be true, false or undefined!

How can we extend the incomplete information in V to all formulas?

- $\cdot \hspace{0.1 cm} \varphi \wedge \psi$ at a world w should be
 - $\cdot \, \, {\rm true}$ if both φ and ψ are ${\rm true}$ at w
 - \cdot false if one of φ or ψ is false at w
 - · undefined in all other situations
- $\cdot \Box \varphi$ at a world *w* should be
 - **true** if for all w' with R(w, w'), φ is **true** at w',
 - false if there is some w' with R(w, w') such that φ is false at w'
 - $\cdot\,$ undefined in all other situations

Three-valued logic

\wedge	f	и	t
f	f	f	f
и	f	и	и
t	f	и	t

- Kripke frame: $\langle W, R \rangle$ $R \subseteq W \times W$
- Valuation:

 $V: Var \times W \rightarrow \{$ false, undefined, true $\}$

 $V(\Box \varphi, w) = \bigwedge_{R(w,w')} V(\varphi, w')$

 $V(\Box p, w_1) = undefined$

MANY-VALUED ACCESSIBILITY RELATION

Suppose we have two experts **Ion** – I and **Maria** – M who are being asked to pass judgement on the truth of various statements, in various situations.

The truth-valued space is a four-valued one:

- neither says true
- · I says true, but M says no
- M says true, but I says no
- both says yes

Two kinds of judgements are possible:

- \cdot the statement φ is true in the situation w
- w is a situation that should be considered

Consider the scenario:

- $\cdot\,$ Both I and M say w_1 should be considered
- \cdot Only I says w_2 should be considered

Consider the scenario:

- $\cdot\,$ Both I and M say w1 should be considered
- \cdot Only I says w_2 should be considered
- · Only M says p would be true in situation w_1

Consider the scenario:

- $\cdot\,$ Both I and M say w_1 should be considered
- \cdot Only I says w_2 should be considered
- · Only M says p would be true in situation w_1
- · Nobody says p would be true in situation w_2

How should $\Box p$ be evaluated in world w?

In a sense, it should be what is common to all alternative situations. For example, $V(\Box p, w) = V(p, w_1) \land V(p, w_2) = \emptyset$. We must also take into account which situations should be considered!

• For w_1 :

- · Everybody says it should be considered!
- · From I we get a no.
- \cdot From M we get a yes.
- · Thus w_1 contributes {M}.

• For w_2 :

- I says w_2 should be considered and that p is false there, so from I we get a no.
- M does not say it should be considered at all, so we count from M a yes.
- · Thus w_2 contributes {M}.

Therefore $V(\Box p, w) = \{M\}$

On a closer examination, we used the following rule:

The truth value of $\Box \varphi$ is the intersection, over all worlds, of the truth value of φ at an alternative world union the complement of the accessibility value of that alternative world.

 $V(\Box\varphi, w) = \bigwedge \{ \overline{R}(w, w') \lor V(\varphi, w') : \text{ all } w' \}$

On a closer examination, we used the following rule:

The truth value of $\Box \varphi$ is the intersection, over all worlds, of the truth value of φ at an alternative world union the complement of the accessibility value of that alternative world.

 $V(\Box \varphi, w) = \bigwedge \{ R(w, w') \to V(\varphi, w') : \text{ all } w' \}$

(Fitting)

INTUITION ON MANY-VALUED MODAL LOGICS

LET'S GET FORMAL

• Kripke frame: $\langle W, R \rangle$ $R \subseteq W \times W$

• Valuation:

 $V: Var \times W \rightarrow \{$ false, true $\}$

- Kripke frame: $\langle W, R \rangle$ $R: W \times W \rightarrow \{0, 1\}$
- Valuation:
 - $V: Var \times W \rightarrow \{0, 1\}$

• Kripke frame: $\langle W, R \rangle$ $R: W \times W \rightarrow ?$

• Valuation:

 $V: Var \times W \rightarrow ?$

A residuated lattice is a structure $\mathbf{A} = \langle A, \wedge, \vee, \odot, \rightarrow, 0, 1 \rangle$ such that:

- $\cdot \ \langle A, \wedge, \vee, 0, 1 \rangle$ is a bounded lattice with top 1 and bottom 0
- · $\langle A, \odot, 1 \rangle$ is a commutative monoid
- $\cdot \rightarrow$ is the residuum of the \odot , i.e.

$$x \odot y \le z \quad \Leftrightarrow \quad x \le y \to z \quad \text{for all } x, y, z \in A$$

integral, commutative $$\rm FL_{ew}\mbox{-}algebras$ residuated monoids

To any residuated lattice **A** there is a natural way to associate a logic Log(A).

RESIDUATED LATTICES AND SUBVARIETIES

$$\begin{array}{ll} (idem) & x \odot x = x \\ (prel) & (x \rightarrow y) \lor (y \rightarrow x) = 1 \\ (div) & x \land y = x \odot (x \rightarrow y) \\ (inv) & \neg \neg x = x \end{array}$$

A residuated lattice **A** is complete if

 $\bigvee X$ and $\bigwedge X$ exist in A for all $X \subseteq A$.

Example

• Standard Łukasiewicz algebra [0, 1]Ł

$$x \odot y = \max\{0, x+y-1\}$$

 $x \to y = \min\{1, 1-x+y\}$

 \cdot Standard Gödel algebra $[0,1]_{G}$

$$\begin{array}{rcl} x \odot y &=& x \wedge y \\ x \rightarrow y &=& \begin{cases} 1 \, , & \text{if } x \leq y, \\ 0 \, , & \text{if } y < x \end{cases}$$

Let **A** be a complete residuated lattice.

An (A-valued) Kripke frame is a pair $\mathfrak{F} = \langle W, R \rangle$ where $R: W \times W \rightarrow A$

A kripke frame $\mathfrak{F} = \langle W, R \rangle$ is called

- crisp (or classical) if $R[W \times W] \subseteq \{0, 1\}$
- · idempotent if $R[W \times W] \subseteq \{a \in A : a \odot a = a\}$

An (A-valued) Kripke model is a pair $\mathfrak{M} = \langle W, R, V \rangle$ where

- $\cdot \mathfrak{F} = \langle W, R \rangle$ is an (**A**-valued) Kripke frame
- \cdot V : Var \times W \rightarrow A is a valuation

We can extend to $V : Fm \times W \rightarrow A$ by

- $\cdot \ V(\varphi \ \circ \ \psi, w) = V(\varphi, w) \ \circ \ V(\psi, w) \quad \text{where} \ \circ \in \{\land, \lor, \odot, \rightarrow\}$
- $\cdot \ V(\Box \varphi, w) = \bigwedge \{ R(w, w') \to V(\varphi, w') \ : \ w' \in W \}$

$$V(\Diamond \varphi, V) = \bigvee \{ R(w, w') \odot V(\varphi, w') : w' \in W \}$$

In general, we cannot define \diamond as an abbreviation of $\neg \Box \neg$! We can do this without troubles in the involutive cases.

VALIDITY

If $\mathfrak{M} = \langle W, R, V \rangle$ is a Kripke model and $w \in W$, $\mathfrak{F} = \langle W, R \rangle$ is a Kripke frame, and K is a class of Kripke frames, we

write	say	if
$\mathfrak{M}, w \models^{1} \varphi$ $w \models^{1} \varphi$	w validates $arphi$	$V(\varphi, w) = 1$
$\mathfrak{M} \models^1 \varphi$	$arphi$ is valid in ${\mathfrak M}$	$w \models^1 \varphi$, for every $w \in W$
$\mathfrak{F}\models^{1}\varphi$	$arphi$ is valid in $\mathfrak F$	arphi is valid in any
		Kripke model based on $\mathfrak F$
$\mathbf{K} \models^1 \varphi$		arphi is valid in all
		frames in K

In general, the normality axiom (K) is not valid in Fr! $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \qquad (K)$

Example

Theorem (Bou – Esteva – Godo – Rodríguez)

· Some valid formulas in FR are

 $(\Box \varphi \land \Box \psi) \leftrightarrow \Box (\varphi \land \psi)$ $\neg \neg \Box \varphi \rightarrow \Box \neg \neg \varphi$

 \cdot Some valid formulas in ${\rm IFR}$ are

 $\Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$ $(\Box \varphi \odot \Box \psi) \to \Box(\varphi \odot \psi)$

 $\cdot\,$ Some valid formulas in CFR are

 $\Box 0 \lor \neg \Box 0$

Theorem (Bou – Esteva – Godo – Rodríguez)

Axiom (K) is valid in \mathbf{Fr} iff **A** is a Heyting algebra iff $\mathbf{Fr} = \mathbf{IFr}$

Let us remark two particular cases when axiom (K) holds:

- $\cdot \,$ when \odot and \wedge coincide
- \cdot in all crisp Kripke frames CFr

MANY-VALUED MODAL LOGICS

What is the many-valued counterpart of the minimum classical modal logic K?

Let A be a complete residuated lattice and F be a class of Kripke frames.

The many-valued modal logic $Log_{\Box}(A, F)$ is defined as the set of formulas $\varphi \in Fm_{\Box}$ satisfying that

for every A-valued Kripke model \mathfrak{M} over a frame in F, $\mathfrak{M} \models^{1} \varphi$.

How can we axiomatize the minimal logic $Log_{\Box}(A, Fr)$?

What axioms and rules must we add to an axiomatization of Log(A) to get an axiomatization of $Log_{\Box}(A, F)$? Let ${\bf A}$ be a complete residuated lattice and ${\rm F}$ be a class of Kripke frames.

The many-valued modal consequence $\models_{\Box(A,F)}$ is defined by

$$\label{eq:relation} \begin{split} \Gamma \models_{\Box(A,F)} \varphi \quad \text{iff} \quad \text{for every A-valued Kripke model \mathfrak{M} over a frame in F,} \\ \quad \text{if $\mathfrak{M} \models^1 \Gamma$, then $\mathfrak{M} \models^1 \varphi$.} \end{split}$$

The set of theorems of $\models_{\Box(A,F)}$ is precisely the set $Log_{\Box}(A,F)$.

Standard Gödel algebra [0, 1]_G

$$\begin{array}{rcl} x \odot y &=& x \wedge y \\ x \rightarrow y &=& \begin{cases} 1 \, , & \text{if } x \leq y, \\ 0 \, , & \text{if } y < x \end{cases}$$

 $\begin{array}{l} \mathsf{Log}_{\Box}([0,1]_{G},\mathrm{Fr}) \text{ is axiomatized by the axioms of } \mathsf{Log}([0,1]_{G}) \text{ and} \\ (\mathcal{K}) \qquad \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \\ (Z) \qquad \neg \neg \Box \varphi \to \Box \neg \neg \varphi \end{array}$

and has the Modus Ponens rule and the Necessity rule.

Moreover, $Log_{\Box}([0, 1]_G, Fr) = Log_{\Box}([0, 1]_G, CFr)$

(Caicedo – Rodríguez, Metcalfe – Olivetti)

 $\begin{array}{l} \text{Log}_{\square}({\boldsymbol{\Bbbk}}_n, {\rm CFr}) \text{ is axiomatized by the axioms of } \text{Log}({\boldsymbol{\Bbbk}}_n) \text{ and} \\ ({\boldsymbol{K}}) \quad \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \\ \quad \Box(\varphi \oplus \varphi) \leftrightarrow \Box \varphi \oplus \Box \varphi \end{array}$

 $\Box(\varphi\odot\varphi)\leftrightarrow\Box\varphi\odot\Box\varphi$

and has the Modus Ponens rule and the Necessity rule.

(Hansoul – Teheux)

An axiomatiozation for $Log_{\Box}(\underline{k}_n, Fr)$ is also known.

(Bou – Esteva – Godo – Rodríguez)

ŁUKASIEWICZ LOGIC CASE

Standard Łukasiewicz algebra $[0,1]_{L}$ $x \odot y = \max\{0, x+y-1\}$

$$x \to y = \min\{1, 1 - x + y\}$$

 $Log_{\Box}([0,1]_{t}, CFr)$ is axiomatized by the axioms of $Log([0,1]_{t})$ and

$$\begin{array}{ll} (\mathcal{K}) & \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi) \\ & \Box(\varphi \oplus \varphi) \leftrightarrow \Box \varphi \oplus \Box \varphi \\ & \Box(\varphi \odot \varphi) \leftrightarrow \Box \varphi \odot \Box \varphi \\ & \Box(\varphi \oplus \varphi^n) \leftrightarrow ((\Box \varphi) \oplus (\Box \varphi)^n) \end{array}$$

and has the Modus Ponens rule, the Necessity rule and the infinitary rule

$$\frac{\varphi \oplus \varphi \ , \ \varphi \oplus \varphi^2 \ , \ \ldots , \varphi \oplus \varphi^n \ , \ldots }{\varphi}$$

(Hansoul – Teheux)

- · Can we avoid the infinitary rule for $Log_{\Box}([0,1]_{t}, CFr)$?
- What about $Log_{\Box}([0, 1]_{t}, Fr)$?
- · Axiomatizations for other cases when (K) fails?

• • • •

Thank you for your attention!

All math is applied math... eventually.

Some metalogical properties are lost.

- If A and B generate the same variety, does not mean that $Log_{\Box}(A, CFr) = Log_{\Box}(B, CFr)!$
 - $\cdot \Box \neg \neg p \to \neg \neg \Box p \not\in \mathsf{Log}_{\Box}([0,1]_G, \mathrm{CFr})$
 - $\cdot \Box \neg \neg p \rightarrow \neg \neg \Box p \in \mathsf{Log}_{\Box}(\{0\} \cup [\frac{1}{2}, 1], \mathrm{CFr})$

In general, the modal logic given by **A** does not coincide with the modal logic given by the variety generated by **A**.

- It can happen that two classes F_1 and F_2 of crisp Kripke frames have different many-valued modal logics for an algebra A, while for the case of the Boolean algebra of two elements they share the same logic.
 - $\cdot \, \, {\bf F}_1$ the class of finite quasi-orders and ${\bf F}_2$ the class of infinite partial orders
 - $\cdot \$ both ${\rm F_1}$ and ${\rm F_2}$ generates S_4
 - $\cdot \Box \neg \neg p \rightarrow \neg \neg \Box p \in \mathsf{Log}_{\Box}([0,1]_G,\mathrm{F}_1)$
 - $\cdot \Box \neg \neg p \rightarrow \neg \neg \Box p \not\in \mathsf{Log}_{\Box}([0,1]_G,\mathrm{F}_2)$