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what are many-valued modal logics?



a first (possible) answer
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possible worlds semantics
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many-valued worlds
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many-valued worlds
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first example

Kripke model:
∙ Kripke frame: ⟨W,R⟩
R ⊆ W×W

∙ Valuation:
V : Var×W → {false, true}
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first example

Kripke model:
∙ Kripke frame: ⟨W,R⟩
R ⊆ W×W

∙ Valuation:
V : Var×W → {false, true}

Extending V:
V(□φ,w) =

∧
R(w,w′) V(φ,w′)

pw1 p w2

p
w3

p
w4

V(□p,w1) = true

true

false

What happens if V is allowed to be partial?

A variable at a world can be true, false or undefined!
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first example

How can we extend the incomplete information in V to all formulas?

∙ φ ∧ ψ at a world w should be
∙ true if both φ and ψ are true at w
∙ false if one of φ or ψ is false at w
∙ undefined in all other situations

∙ □φ at a world w should be
∙ true if for all w′ with R(w,w′), φ is true at w′,
∙ false if there is some w′ with R(w,w′) such that φ is false at w′

∙ undefined in all other situations
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first example

Three-valued logic

true

undefined

false

∧ f u t
f f f f
u f u u
t f u t
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first example

Kripke model:
∙ Kripke frame: ⟨W,R⟩
R ⊆ W×W

∙ Valuation:
V : Var×W → {false,undefined, true}

V(□φ,w) =
∧

R(w,w′) V(φ,w′)

pw1 p w2

p
w3

p
w4

V(□p,w1) = undefined

true

undef.

false
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many-valued worlds
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many-valued accessibility relation
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second example

Suppose we have two experts Ion – I and Maria – M who are being asked
to pass judgement on the truth of various statements, in various
situations.

The truth-valued space is a four-valued one:
∙ neither says true
∙ I says true, but M says no
∙ M says true, but I says no
∙ both says yes

{I, M}

{I} {M}

∅

Two kinds of judgements are possible:

∙ the statement φ is true in the situation w
∙ w is a situation that should be considered
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second example

Consider the scenario:

∙ Both I and M say w1 should be considered
∙ Only I says w2 should be considered

w1 w2

w

{I,M} {I}
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second example

Consider the scenario:

∙ Both I and M say w1 should be considered
∙ Only I says w2 should be considered

∙ Only M says p would be true in situation w1

p:{M}

w1 w2

w

{I,M} {I}
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second example

Consider the scenario:

∙ Both I and M say w1 should be considered
∙ Only I says w2 should be considered

∙ Only M says p would be true in situation w1
∙ Nobody says p would be true in situation w2

p:{M}

w1

p:∅

w2

w

{I,M} {I}

How should □p be evaluated in world w?

In a sense, it should be what is common to all alternative situations.

For example, V(□p,w) = V(p,w1) ∧ V(p,w2) = ∅.
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second example

We must also take into account which situations should be considered!
∙ For w1:
∙ Everybody says it should be considered!
∙ From I we get a no.
∙ From M we get a yes.
∙ Thus w1 contributes {M}.

∙ For w2:
∙ I says w2 should be considered and that p is false
there, so from I we get a no.

∙ M does not say it should be considered at all, so we
count from M a yes.

∙ Thus w2 contributes {M}.

p:{M}

w1

p:∅

w2

w

{I,M} {I}

Therefore V(□p,w) = {M}
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second example

On a closer examination, we used the following rule:

The truth value of □φ is the intersection, over all worlds,
of the truth value of φ at an alternative world

union the complement of the accessibility value of that alternative world.

V(□φ,w) =
∧
{R̄(w,w′) ∨ V(φ,w′) : all w′}
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second example

On a closer examination, we used the following rule:

The truth value of □φ is the intersection, over all worlds,
of the truth value of φ at an alternative world

union the complement of the accessibility value of that alternative world.

V(□φ,w) =
∧
{R(w,w′) → V(φ,w′) : all w′}

(Fitting)
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intuition on many-valued modal logics
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let’s get formal



classical possible worlds semantics

Kripke model:

∙ Kripke frame: ⟨W,R⟩
R ⊆ W×W

∙ Valuation:
V : Var×W → {false, true}
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classical possible worlds semantics

Kripke model:

∙ Kripke frame: ⟨W,R⟩
R : W×W → {0, 1}

∙ Valuation:
V : Var×W → {0, 1}
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generalising possible worlds semantics

Kripke model:

∙ Kripke frame: ⟨W,R⟩
R : W×W → ?

∙ Valuation:
V : Var×W → ?
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residuated lattices

A residuated lattice is a structure A = ⟨A,∧,∨,⊙,→, 0, 1⟩ such that:

∙ ⟨A,∧,∨, 0, 1⟩ is a bounded lattice with top 1 and bottom 0

∙ ⟨A,⊙, 1⟩ is a commutative monoid

∙ → is the residuum of the ⊙, i.e.
x ⊙ y ≤ z ⇔ x ≤ y → z for all x, y, z ∈ A

integral, commutative FLew-algebrasresiduated monoids

To any residuated lattice A there is a natural way to associate a logic
Log(A).
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residuated lattices and subvarieties

Bool

Π MV G

HABL

MTL

FLew

(idem)

(prel)

(div)

(inv) (idem) (prel)

(idem) x ⊙ x = x
(prel) (x → y) ∨ (y → x) = 1
(div) x ∧ y = x ⊙ (x → y)
(inv) ¬¬x = x
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complete residuated lattices

A residuated lattice A is complete if∨
X and

∧
X exist in A for all X ⊆ A.

Example

∙ Standard Łukasiewicz algebra [0, 1]Ł
x ⊙ y = max{0 , x+ y− 1}
x → y = min{1 , 1− x+ y}

∙ Standard Gödel algebra [0, 1]G
x ⊙ y = x ∧ y

x → y =

{
1 , if x ≤ y,
0 , if y < x
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kripke frames

Let A be a complete residuated lattice.

An (A-valued) Kripke frame is a pair F = ⟨W,R⟩ where

R : W×W → A

A kripke frame F = ⟨W,R⟩ is called

∙ crisp (or classical) if R[W×W] ⊆ {0, 1}

∙ idempotent if R[W×W] ⊆ {a ∈ A : a ⊙ a = a}

CFr ⊆ IFr ⊆ Fr
crisp idempotent

Kripke frames Kripke frames Kripke frames
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kripke models

An (A-valued) Kripke model is a pairM = ⟨W,R, V⟩ where

∙ F = ⟨W,R⟩ is an (A-valued) Kripke frame

∙ V : Var×W → A is a valuation

We can extend to V : Fm×W → A by

∙ V(φ ◦ ψ,w) = V(φ,w) ◦ V(ψ,w) where ◦ ∈ {∧,∨,⊙,→}

∙ V(□φ,w) =
∧
{R(w,w′) → V(φ,w′) : w′ ∈ W}
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the possibility operator

V(♢φ, V) =
∨
{R(w,w′) ⊙ V(φ,w′) : w′ ∈ W}

In general, we cannot define ♢ as an abbreviation of ¬□¬!

We can do this without troubles in the involutive cases.
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validity

IfM = ⟨W,R, V⟩ is a Kripke model and w ∈ W,
F = ⟨W,R⟩ is a Kripke frame, and K is a class of Kripke frames,
we

write say if
M,w |=1 φ w validates φ V(φ,w) = 1w |=1 φ

M |=1 φ φ is valid inM w |=1 φ, for every w ∈ W

F |=1 φ φ is valid in F
φ is valid in any

Kripke model based on F

K |=1 φ
φ is valid in all
frames in K
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the normality axiom

In general, the normality axiom (K) is not valid in Fr!

□(φ→ ψ) → (□φ→ □ψ) (K)

Example

V(□(p → q),w)
= R(w,w) → V(p → q,w)
= 0.5 → 0.5 = 1

V(□p,w) = R(w,w) → V(p,w)
= 0.5 → 0.5 = 1

V(□q,w) = 0.5 → 0 = 0.5

V(□(p → q) → (□p → □q),w)
= 1 → (1 → 0.5) = 0.5

MV-chain

0 0.5 1

x ⊙ y = max{0 , x+ y− 1}
x → y = min{1 , 1− x+ y}

Kripke model

p = 0.5
q = 0

w

0.5
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validity

Theorem (Bou – Esteva – Godo – Rodríguez)

∙ Some valid formulas in FR are

(□φ ∧□ψ) ↔ □(φ ∧ ψ)
¬¬□φ→ □¬¬φ

∙ Some valid formulas in IFR are
□(φ→ ψ) → (□φ→ □ψ)
(□φ⊙□ψ) → □(φ⊙ ψ)

∙ Some valid formulas in CFR are
□0 ∨ ¬□0
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validity of the normality axiom

Theorem (Bou – Esteva – Godo – Rodríguez)

Axiom (K) is valid in Fr iff A is a Heyting algebra
iff Fr = IFr

Let us remark two particular cases when axiom (K) holds:

∙ when ⊙ and ∧ coincide

∙ in all crisp Kripke frames CFr

29



many-valued modal logics



a natural question

What is the many-valued
counterpart of the minimum

classical modal logic K?
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the many-valued modal logic

Let A be a complete residuated lattice and F be a class of Kripke frames.

The many-valued modal logic Log□(A,F) is defined as the set of
formulas φ ∈ Fm□ satisfying that

for every A-valued Kripke modelM over a frame in F,M |=1 φ.

How can we axiomatize the minimal logic Log□(A,Fr)?

What axioms and rules must we add to
an axiomatization of Log(A) to get an axiomatization of Log□(A,F)?
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many-valued modal consequence

Let A be a complete residuated lattice and F be a class of Kripke frames.

The many-valued modal consequence |=□(A,F) is defined by

Γ |=□(A,F) φ iff for every A-valued Kripke modelM over a frame in F,
ifM |=1 Γ, thenM |=1 φ.

The set of theorems of |=□(A,F) is precisely the set Log□(A,F) .
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gödel logic case

Classic

Π Ł G

IntBL

MTL

FLew

(idem)

(prel)

(div)

(idem) (prel) Standard Gödel algebra [0, 1]G
x ⊙ y = x ∧ y

x → y =

{
1 , if x ≤ y,
0 , if y < x
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gödel modal logic

Log□([0, 1]G,Fr) is axiomatized by the axioms of Log([0, 1]G) and

(K) □(φ→ ψ) → (□φ→ □ψ)
(Z) ¬¬□φ→ □¬¬φ

and has the Modus Ponens rule and the Necessity rule.

Moreover, Log□([0, 1]G,Fr) = Log□([0, 1]G,CFr)

(Caicedo – Rodríguez,
Metcalfe – Olivetti)
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finite łukasiewicz logic case

Classic

Π

Łn

Ł G

IntBL

MTL

FLew

(inv)

For any strictly positive integer n,

Łn = {0, 1n , . . . ,
n−1
n , 1}

x ⊙ y = max{0 , x+ y− 1}
x → y = min{1 , 1− x+ y}
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finite-valued łukasiewicz modal logic

Log□(Łn,CFr) is axiomatized by the axioms of Log(Łn) and

(K) □(φ→ ψ) → (□φ→ □ψ)
□(φ⊕ φ) ↔ □φ⊕□φ
□(φ⊙ φ) ↔ □φ⊙□φ

and has the Modus Ponens rule and the Necessity rule.

(Hansoul – Teheux)

An axiomatiozation for Log□(Łn,Fr) is also known.

(Bou – Esteva – Godo – Rodríguez)
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łukasiewicz logic case

Classic

Π Ł G

IntBL

MTL

FLew

(inv)
Standard Łukasiewicz algebra

[0, 1]Ł

x ⊙ y = max{0 , x+ y− 1}
x → y = min{1 , 1− x+ y}
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łukasiewicz modal logic

Log□([0, 1]Ł,CFr) is axiomatized by the axioms of Log([0, 1]Ł) and

(K) □(φ→ ψ) → (□φ→ □ψ)
□(φ⊕ φ) ↔ □φ⊕□φ
□(φ⊙ φ) ↔ □φ⊙□φ
□(φ⊕ φn) ↔ ((□φ)⊕ (□φ)n)

and has the Modus Ponens rule, the Necessity rule and the infinitary rule

φ⊕ φ , φ⊕ φ2 , . . . , φ⊕ φn , . . .

φ

(Hansoul – Teheux)
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a lot of questions in search of an answer

∙ Can we avoid the infinitary rule for Log□([0, 1]Ł,CFr)?

∙ What about Log□([0, 1]Ł,Fr)?

∙ Axiomatizations for other cases when (K) fails?

∙ . . .
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Thank you for your attention!
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appendix: transfer properties

Some metalogical properties are lost.

∙ If A and B generate the same variety, does not mean that
Log□(A,CFr) = Log□(B,CFr)!
∙ □¬¬p → ¬¬□p ̸∈ Log□([0, 1]G,CFr)
∙ □¬¬p → ¬¬□p ∈ Log□({0} ∪ [ 12 , 1],CFr)

In general, the modal logic given by A does not coincide with the
modal logic given by the variety generated by A.

∙ It can happen that two classes F1 and F2 of crisp Kripke frames have
different many-valued modal logics for an algebra A, while for the case
of the Boolean algebra of two elements they share the same logic.
∙ F1 the class of finite quasi-orders and F2 the class of infinite partial orders
∙ both F1 and F2 generates S4
∙ □¬¬p → ¬¬□p ∈ Log□([0, 1]G,F1)

∙ □¬¬p → ¬¬□p ̸∈ Log□([0, 1]G,F2)
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