MANY-VALUED MODAL LOGICS

Denisa Diaconescu - University of Bern, University of Bucharest

SGSLPS Meeting
October 30th, 2015

WHAT ARE MANY-VALUED MODAL LOGICS?

A FIRST (POSSIBLE) ANSWER

Modal Logic Modal Logic Modal Logic Modal Logic Modal Logic

Modal Logic Modal Logic Modal Logic Modal Logic Modal Logic

$$
\because
$$

MANY-VALUED WORLDS

MANY-VALUED WORLDS

FIRST EXAMPLE

Kripke model:

- Kripke frame: $\langle W, R\rangle$
$R \subseteq W \times W$
- Valuation:
$V: \operatorname{Var} \times W \rightarrow$ \{false, true $\}$

FIRST EXAMPLE

Kripke model:

- Kripke frame: $\langle W, R\rangle$
$R \subseteq W \times W$
- Valuation:

V: Var $\times W \rightarrow\{$ false, true $\}$

Extending V :

$$
V(\square \varphi, w)=\bigwedge_{R\left(w, w^{\prime}\right)} V\left(\varphi, w^{\prime}\right) \quad V\left(\square p, w_{1}\right)=\text { true }
$$

What happens if V is allowed to be partial?
A variable at a world can be true, false or undefined!

FIRST EXAMPLE

How can we extend the incomplete information in V to all formulas?

- $\varphi \wedge \psi$ at a world w should be
- true if both φ and ψ are true at w
- false if one of φ or ψ is false at w
- undefined in all other situations
- $\square \varphi$ at a world w should be
- true if for all w^{\prime} with $R\left(w, w^{\prime}\right), \varphi$ is true at w^{\prime},
- false if there is some w^{\prime} with $R\left(w, w^{\prime}\right)$ such that φ is false at w^{\prime}
- undefined in all other situations

FIRST EXAMPLE

Three-valued logic

FIRST EXAMPLE

Kripke model:

- Kripke frame: $\langle W, R\rangle$
$R \subseteq W \times W$
- Valuation:
V : Var $\times W \rightarrow$ false, undefined, true $\}$
$V(\square \varphi, w)=\bigwedge_{R\left(w, w^{\prime}\right)} V\left(\varphi, w^{\prime}\right)$

$V\left(\square p, w_{1}\right)=$ undefined

MANY-VALUED WORLDS

MANY-VALUED ACCESSIBILITY RELATION

SECOND EXAMPLE

Suppose we have two experts Ion - I and Maria - M who are being asked to pass judgement on the truth of various statements, in various

situations.

The truth-valued space is a four-valued one:

- neither says true
- I says true, but M says no
- M says true, but I says no
- both says yes

Two kinds of judgements are possible:

- the statement φ is true in the situation w
- w is a situation that should be considered

SECOND EXAMPLE

Consider the scenario:

- Both I and M say W_{1} should be considered
- Only I says w whould be considered

SECOND EXAMPLE

Consider the scenario:

- Both I and M say W_{1} should be considered
- Only I says wa should be considered
- Only M says p would be true in situation w_{1}

SECOND EXAMPLE

Consider the scenario:

- Both I and M say W_{1} should be considered
- Only I says wa should be considered
- Only M says p would be true in situation w_{1}
- Nobody says p would be true in situation w_{2}

How should $\square p$ be evaluated in world w?

In a sense, it should be what is common to all alternative situations.
For example, $V(\square p, w)=V\left(p, w_{1}\right) \wedge V\left(p, w_{2}\right)=\emptyset$.

SECOND EXAMPLE

We must also take into account which situations should be considered!

- For W_{1} :
- Everybody says it should be considered!
- From I we get a no.
- From M we get a yes.
- Thus w_{1} contributes $\{M\}$.
- For w_{2} :
- I says w_{2} should be considered and that p is false there, so from I we get a no.
- M does not say it should be considered at all, so we count from M a yes.

Thus W_{2} contributes $\{M\}$.
Therefore $V(\square p, w)=\{M\}$

SECOND EXAMPLE

On a closer examination, we used the following rule:

The truth value of $\square \varphi$ is the intersection, over all worlds, of the truth value of φ at an alternative world union the complement of the accessibility value of that alternative world.

$$
V(\square \varphi, w)=\bigwedge\left\{\bar{R}\left(w, w^{\prime}\right) \vee V\left(\varphi, w^{\prime}\right): \text { all } w^{\prime}\right\}
$$

SECOND EXAMPLE

On a closer examination, we used the following rule:

The truth value of $\square \varphi$ is the intersection, over all worlds, of the truth value of φ at an alternative world union the complement of the accessibility value of that alternative world.

$$
V(\square \varphi, w)=\bigwedge\left\{R\left(w, w^{\prime}\right) \rightarrow V\left(\varphi, w^{\prime}\right): \text { all } w^{\prime}\right\}
$$

(Fitting)

INTUITION ON MANY-VALUED MODAL LOGICS

LET'S GET FORMAL

CLASSICAL POSSIBLE WORLDS SEMANTICS

Kripke model:

- Kripke frame: $\langle W, R\rangle$ $R \subseteq W \times W$
- Valuation:
$V: \operatorname{Var} \times W \rightarrow$ \{false, true $\}$

CLASSICAL POSSIBLE WORLDS SEMANTICS

Kripke model:

- Kripke frame: $\langle W, R\rangle$ $R: W \times W \rightarrow\{0,1\}$
- Valuation:
$V: \operatorname{Var} \times W \rightarrow\{0,1\}$

generalising possible worlds semantics

Kripke model:

- Kripke frame: $\langle W, R\rangle$ $R: W \times W \rightarrow$?
- Valuation:
$V: \operatorname{Var} \times W \rightarrow$?

RESIDUATED LATTICES

A residuated lattice is a structure $A=\langle A, \wedge, \vee, \odot, \rightarrow, 0,1\rangle$ such that:

- $\langle A, \wedge, \vee, 0,1\rangle$ is a bounded lattice with top 1 and bottom 0
- $\langle A, \odot, 1\rangle$ is a commutative monoid
\rightarrow is the residuum of the \odot, i.e.

$$
x \odot y \leq z \quad \Leftrightarrow \quad x \leq y \rightarrow z \quad \text { for all } x, y, z \in A
$$

integral, commutative residuated monoids
$\mathrm{FL}_{\text {ew }}$-algebras

To any residuated lattice \boldsymbol{A} there is a natural way to associate a logic $\log (A)$.

RESIDUATED LATTICES AND SUBVARIETIES

COMPLETE RESIDUATED LATTICES

A residuated lattice A is complete if
$\vee X$ and $\wedge X$ exist in A for all $X \subseteq A$.
Example

- Standard Łukasiewicz algebra $[0,1]_{Ł}$

$$
\begin{aligned}
x \odot y & =\max \{0, x+y-1\} \\
x \rightarrow y & =\min \{1,1-x+y\}
\end{aligned}
$$

- Standard Gödel algebra $[0,1]_{G}$

$$
\begin{aligned}
& x \odot y=x \wedge y \\
& x \rightarrow y= \begin{cases}1, & \text { if } x \leq y \\
0, & \text { if } y<x\end{cases}
\end{aligned}
$$

KRIPKE FRAMES

Let A be a complete residuated lattice.

An (A-valued) Kripke frame is a pair $\mathfrak{F}=\langle W, R\rangle$ where $R: W \times W \rightarrow A$

A kripke frame $\mathfrak{F}=\langle W, R\rangle$ is called

- crisp (or classical) if $R[W \times W] \subseteq\{0,1\}$
- idempotent if $R[W \times W] \subseteq\{a \in A: a \odot a=a\}$

CFr crisp	\subseteq	IFr idempotent Kripke frames frames		Kripke frames

KRIPKE MODELS

An (A-valued) Kripke model is a pair $\mathfrak{M}=\langle W, R, V\rangle$ where

- $\mathfrak{F}=\langle\boldsymbol{W}, R\rangle$ is an (\boldsymbol{A}-valued) Kripke frame
- V : $\operatorname{Var} \times W \rightarrow A$ is a valuation

We can extend to $V: F m \times W \rightarrow A$ by

- $V(\varphi \circ \psi, w)=V(\varphi, w) \circ V(\psi, w) \quad$ where $\circ \in\{\wedge, \vee, \odot, \rightarrow\}$
- $V(\square \varphi, w)=\bigwedge\left\{R\left(w, w^{\prime}\right) \rightarrow V\left(\varphi, w^{\prime}\right): w^{\prime} \in W\right\}$

THE POSSIBILITY OPERATOR

$$
V(\Delta \varphi, V)=\bigvee\left\{R\left(w, w^{\prime}\right) \odot V\left(\varphi, w^{\prime}\right): w^{\prime} \in W\right\}
$$

In general, we cannot define \diamond as an abbreviation of $\neg \square \neg$!
We can do this without troubles in the involutive cases.

VALIDITY

If $\mathfrak{M}=\langle W, R, V\rangle$ is a Kripke model and $w \in W$, $\mathfrak{F}=\langle W, R\rangle$ is a Kripke frame, and K is a class of Kripke frames, we

write	say	if
$\mathfrak{M}, W \not \models^{1} \varphi$	w validates φ	$V(\varphi, w)=1$
$W \not \models^{1} \varphi$	φ is valid in \mathfrak{M}	$w \models^{1} \varphi$, for every $w \in W$
$\mathfrak{M} \not \models^{1} \varphi$	φ is valid in \mathfrak{F}	φ is valid in any Kripke model based on \mathfrak{F}
$\mathfrak{F} \models^{1} \varphi$	φ is valid in all frames in K	
$\mathrm{K} \models^{1} \varphi$		

THE NORMALITY AXIOM

In general, the normality axiom (K) is not valid in Fr!

$$
\begin{equation*}
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \tag{K}
\end{equation*}
$$

Example

$$
\begin{aligned}
& V(\square(p \rightarrow q), w) \\
& \quad=R(w, w) \rightarrow V(p \rightarrow q, w) \\
& \quad=0.5 \rightarrow 0.5=1 \\
& V(\square p, w)=R(w, w) \rightarrow V(p, w) \\
& \quad=0.5 \rightarrow 0.5=1 \\
& V(\square q, w)=0.5 \rightarrow 0=0.5 \\
& V(\square(p \rightarrow q) \rightarrow(\square p \rightarrow \square q), w) \\
& \quad=1 \rightarrow(1 \rightarrow 0.5)=0.5
\end{aligned}
$$

Kripke model

VALIDITY

Theorem (Bou - Esteva - Godo - Rodríguez)

- Some valid formulas in FR are

$$
\begin{gathered}
(\square \varphi \wedge \square \psi) \leftrightarrow \square(\varphi \wedge \psi) \\
\neg \neg \square \varphi \rightarrow \square \neg \neg \varphi
\end{gathered}
$$

- Some valid formulas in IFR are

$$
\begin{gathered}
\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
(\square \varphi \odot \square \psi) \rightarrow \square(\varphi \odot \psi)
\end{gathered}
$$

- Some valid formulas in CFR are

$$
\square 0 \vee \neg \square 0
$$

VALIDITY OF THE NORMALITY AXIOM

Theorem (Bou - Esteva - Godo - Rodríguez)

$$
\begin{array}{ll}
\text { Axiom }(\mathrm{K}) \text { is valid in } \mathrm{Fr} & \text { iff } A \text { is a Heyting algebra } \\
& \text { iff } \quad \mathrm{Fr}=\mathrm{IFr}
\end{array}
$$

Let us remark two particular cases when axiom (k) holds:

- when \odot and \wedge coincide
- in all crisp Kripke frames CFr

MANY-VALUED MODAL LOGICS

A NATURAL QUESTION

THE MANY-VALUED MODAL LOGIC

Let A be a complete residuated lattice and F be a class of Kripke frames.

The many-valued modal $\operatorname{logic}^{\log }{ }_{\square}(A, F)$ is defined as the set of formulas $\varphi \in F m_{\square}$ satisfying that
for every A-valued Kripke model \mathfrak{M} over a frame in $\mathrm{F}, \mathfrak{M} \models^{1} \varphi$.

How can we axiomatize the minimal logic $\log _{\square}(A, F r)$?
What axioms and rules must we add to an axiomatization of $\log (A)$ to get an axiomatization of $\log _{\square}(A, F)$?

MANY-VALUED MODAL CONSEQUENCE

Let A be a complete residuated lattice and F be a class of Kripke frames.

The many-valued modal consequence $\models_{\square(A, F)}$ is defined by
$\Gamma \models_{\square(A, F)} \varphi \quad$ iff \quad for every A-valued Kripke model \mathfrak{M} over a frame in F, if $\mathfrak{M} \models^{1} \Gamma$, then $\mathfrak{M} \models^{1} \varphi$.

The set of theorems of $\models_{\square(A, F)}$ is precisely the set $\log _{\square}(A, F)$.

GÖDEL LOGIC CASE

GÖDEL MODAL LOGIC

$\log _{\square}\left([0,1]_{G}, \operatorname{Fr}\right)$ is axiomatized by the axioms of $\log \left([0,1]_{G}\right)$ and
(K) $\square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)$
(Z) $\quad \neg \neg \square \varphi \rightarrow \square \neg \neg \varphi$
and has the Modus Ponens rule and the Necessity rule.

Moreover, $\log _{\square}\left([0,1]_{G}, \operatorname{Fr}\right)=\log _{\square}\left([0,1]_{G}, \operatorname{CFr}\right)$
(Caicedo - Rodríguez,
Metcalfe - Olivetti)

FINITE ŁUKASIEWICZ LOGIC CASE

FINITE-VALUED ŁUKASIEWICZ MODAL LOGIC

$\log _{\square}\left(\ell_{n}, \mathrm{CFr}\right)$ is axiomatized by the axioms of $\log \left(\ell_{n}\right)$ and

$$
\text { (K) } \begin{aligned}
& \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi) \\
& \square(\varphi \oplus \varphi) \leftrightarrow \square \varphi \oplus \square \varphi \\
& \square(\varphi \odot \varphi) \leftrightarrow \square \varphi \odot \square \varphi
\end{aligned}
$$

and has the Modus Ponens rule and the Necessity rule.
(Hansoul - Teheux)

An axiomatiozation for $\log _{\square}\left(\ell_{n}, \mathrm{Fr}\right)$ is also known.
(Bou - Esteva - Godo - Rodríguez)

ŁUKASIEWICZ LOGIC CASE

ŁUKASIEWICZ MODAL LOGIC

$\log _{\square}\left([0,1]_{\star}, \operatorname{CFr}\right)$ is axiomatized by the axioms of $\log \left([0,1]_{\star}\right)$ and

$$
\text { (K) } \quad \square(\varphi \rightarrow \psi) \rightarrow(\square \varphi \rightarrow \square \psi)
$$

and has the Modus Ponens rule, the Necessity rule and the infinitary rule

$$
\frac{\varphi \oplus \varphi, \varphi \oplus \varphi^{2}, \ldots, \varphi \oplus \varphi^{n}, \ldots}{\varphi}
$$

(Hansoul - Teheux)

A LOT OF QUESTIONS IN SEARCH OF AN ANSWER

- Can we avoid the infinitary rule for $\log _{\square}\left([0,1]_{\mathrm{\kappa}}, \mathrm{CFr}\right)$?
- What about $\log _{\square}\left([0,1]_{\llcorner }, \mathrm{Fr}\right)$?
- Axiomatizations for other cases when (K) fails?

Thank you for your attention!

Then I arbitrarily formulated some arbitrary theorems about it.

What practical applications could this possibly have?

In the future, your mathematical theories
make possible an interdimensional rift in the
I don't
 understand

All math is applied math... eventually.

APPENDIX: TRANSFER PROPERTIES

Some metalogical properties are lost.

- If A and B generate the same variety, does not mean that

$$
\begin{aligned}
& \log _{\square}(A, C F r)=\log _{\square}(B, C F r)! \\
& \cdot \square \neg \neg p \rightarrow \neg \neg \square p \notin \log _{\square}\left([0,1]_{G}, \mathrm{CFr}\right) \\
& \cdot \square \neg \neg p \rightarrow \neg \neg \square p \in \log _{\square}\left(\{0\} \cup\left[\frac{1}{2}, 1\right], \mathrm{CFr}\right)
\end{aligned}
$$

In general, the modal logic given by A does not coincide with the modal logic given by the variety generated by A .

- It can happen that two classes F_{1} and F_{2} of crisp Kripke frames have different many-valued modal logics for an algebra A, while for the case of the Boolean algebra of two elements they share the same logic.
- F_{1} the class of finite quasi-orders and F_{2} the class of infinite partial orders both F_{1} and F_{2} generates S_{4}

$$
\begin{aligned}
& \square \neg \neg p \rightarrow \neg \neg \square p \in \log _{\square}\left([0,1]_{G}, F_{1}\right) \\
& \square \neg \neg p \rightarrow \neg \neg \square p \notin \log _{\square}\left([0,1]_{G}, F_{2}\right)
\end{aligned}
$$

